分数的教学设计(专业15篇)
在一段时间内,总结不仅能够总结经验教训,还能够发现问题,并提出解决方案。写作是一个需要积累和坚持的过程,我们需要多练习才能写出较为完美的作品。快乐来源于内心,我们应该学会发现身边的小确幸,让自己拥有快乐的生活态度。
分数的教学设计篇一
教学目标:。
1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。
2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。
3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
教学重点:。
掌握百分数和分数、小数互化的方法。
教学难点:。
正确、熟练地进行百分数和分数、小数的互化。
教学过程:。
一、复习。
1.百分数的意义是什么?
2.把下面的小数化成分数,并说一说是怎样化的?
0.451.20.367。
3.把下面的分数化成小数,说一说是怎样化的?
百分之十六百分之七十二点五。
百分之一百八十百分之五百。
2.550.481.2510.3。
二、新授。
1.教学例1。
(1)出示例1:把0.24、1.4、0.123化成百分数。
(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
0.24==24%。
1.4====140%。
0.123===12.3%。
(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)。
(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
(5)完成第80页“做一做”第(1)题。
2.教学例2。
(1)出示例2:把27%、135%化成小数。
(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:。
27%==27÷100=0.27。
135%==135÷100=1.35。
(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)。
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
(6)完成第80页“做一做”的第(2)题。
3.引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
4.教学例3。
(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。
(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。
(3)根据学生回答,板书:。
20%==80%==。
(4)想一想:2.5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)。
(5)完成p81“做一做”第1题。
5、教学例4。
(1)学生通过小组自学讨论,找出将分数化成百分数的方法。
(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)。
(3)完成p82“做一做”第1、2题。
三、巩固练习。
1、练习十九第1、2题。
2、练习十九第3题。
四、布置作业。
练习十九第5、6、8题。
教学追记:。
百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。
用百分数解决问题(2)。
教学目标:。
1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、提高学生迁移类推和分析、解决问题的能力。
教学重点:。
掌握解决此类问题的方法。
教学难点:。
理解题中的数量关系。
教学过程:。
一、复习。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
二、新授。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。
3、学生自主解决“实际早林比计划增加了百分之几”的`问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法二:14÷12≈1.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?
(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)。
三、巩固练习。
1、独立完成课本第90页“做一做”的题目。
2、练习二十二第1、2题。
四、布置作业。
练习二十二第3、4题。
教学追记:。
求“相差率”的应用题,是在“求比一个数多(少)几分之几的基础上”发展的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件没有直接给出,需要根据题里的条件先算出来。教学中,我充分让学生理解这一点,理解了这个道理,对于学生的解题起到了不小的帮助作用。同时,我紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。
分数的教学设计篇二
学习目标:
1、理解分数乘分数的意义。掌握分数乘分数的计算方法,并能运用计算。
方法进行正确计算。
2、掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。
3、极度热情,全力以赴,精彩展示,做最好的自己。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的意义,掌握分数乘分数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p10页。
2、计算。
3、我能辩对错。(对的打“ ”,错的打“ ”)。
1)、求1/6的5倍和求5个1/6的和列式都是1/6×5。 ( )。
2)、分数乘整数是求几个加数的和的简便运算。 ( )。
3)、4/21×3=4×3/21=4/7 ( )。
4)、2根1/4米长的铁丝比1根1米长的铁丝长。 ( )。
二、合作探究:
2、分数乘分数,这里的分数也可以是带分数,计算时先把带分数化成( ),然后按( )的方法进行计算。
三、学以致用:
1、想一想、填一填。
2)、分数乘分数,应该( )乘( ),( )乘( ),能约分的可以( )再乘。
3)、一根木棒长7/8米,它的2/7是( )米。
4)、一个长方形的宽是3/7米,长是宽的2倍,这个长方形的面积是( )平方米。
2、计算。
7页。
3、列式计算。
4、动手画一画。
5、解决问题。
1)、要修一条长3/4千米的公路,第一天修了全长1/8,第一天修了多少千米?
2)、一个正方形的边长4/5分米,它的面积是多少平方分米?
分数的教学设计篇三
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学过程。
一、创设情境。
二、组织探究。
1、教学例4出现教材中的图形。
然后问:画斜线部分是1/2的几分之几?又是这个长方形的几分之几?
由此明确:1/2的1/4是1/8,1/2的3/4是3/8。
启发学生进一步思考:求1/2的1/4是多少,可以怎样列式?
求1/2的3/4呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书p45完成。
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。
2、教学例5。
(1)让学生说说23×15和23×45分别表示23的几分之几?
你能用前面得出的结论计算这两道题吗?
学生试做。
订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较。
让学生在自己准备的长方形纸上先涂色表示23。
再画斜线表示23的15和23的45。
学生动手操作,教师巡视对学困生进行指导。
看看操作的结果与你计算的结果是否一致?
学生观察比较。
3、归纳总结。
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?
得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
三、练习。
1、完成p46的试一试。
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算。
通过交流进一步明确计算分数与分数相乘的计算方法。
同学们,下面着几道题你回计算吗?
出示:2/11×3=。
4×5/6=。
请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算。
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
学生分组讨论。
(3)也可以整数与分数直接进行约分后再计算。这样更简便。
教师进行示范如p46。
2、练习。
完成p46的练一练。
引导学生用直接约分的方法进行计算。
五、综合练习。
1、做练习九的第1题。
先在图中画一画再列式计算。
2、做练习九的第3题。
说出错的原因。
3、做练习九的第4题。
看谁算的最快。
六、全课小结。
通过这节课的学习,你有什么收获?还有什么疑惑?
七、作业。
练习九的第2、5题。
教后记:本课的目的是使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则,进一步巩固分数乘法的计算法则。基本达到教学要求。
分数的教学设计篇四
1、经历运用面积模型探索分数乘分数计算方法的过程,理解分数乘分数的意义。
2、掌握分数乘分数的计算方法,能正确地计算分数乘分数的乘法运算。
3、会解决有关的实际问题,体会分数乘分数的乘法在生活中的应用。重点:掌握分数乘分数的计算方法,能正确地计算。
难点:能运用分数乘分数的知识解决简单的实际问题。
一、情境导入。
教师说明:一尺长的木棍,每天截一半,永远也截不完。
师:庄子的这句话对不对呢?我们来验证一下。
二、自主探究。
1、操作探究。
教师和学生都拿出准备好的纸条,按照课本上的样子来操作验证庄子的'话。
根据对折,对折,再对折,得出:1111×=×=2242。
师:照这样的方式截下去,永远也截不完。
2、探索分数乘分数的计算方法。
拿出一张长方形的纸按照书上的方法折,涂色。
折一折,涂一涂。
31×=44。
331小组合作完成,先用图形表示出,再表示出的444。
3、按照上面的方法折一折,想一想,并算出结果。
小结:分数与分数相乘与相乘的积作为分子,
与相乘的积作分母。
思考:此法与分数与整数相乘的方法有矛盾吗?
两个分数相乘,分子和分子相乘,分母和分母相乘,能约分的要约分。
【尝试练习】。
351、填空:(1)×表示()78。
43(2)米的是()米。
54。
3、计算,结果约分成最简分数。
分数的教学设计篇五
教科书第10~11页例3、例4。
1、通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2、发展学生的观察推理能力。
1、根据例题制作的挂图、投影片或多媒体课件。
2、每个学生准备一张长15cm、宽10cm的长方形纸。
一、创设情境引入新课。
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)。
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)。
让学生计算,并说说怎样计算。
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
二、操作探究计算算理。
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)。
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20。
学生讨论交流汇报。
(板书)。
三、迁移延伸,归纳法则。
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)。
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
(板书)。
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
四、反馈提高,巩固计算。
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
分数的教学设计篇六
1、经历分数产生的过程,理解分数的意义,明确分数与除法的关系。
2、认识真分数与假分数,知道带分数是一部分的假分数的另一种书写形式,能把假分数化成带分数或整数。
3、经历分数的基本性质的形成过程,理解和掌握分数的基本性质,会比较分数的大小。
4、现实情境与数学知识相结合,理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数和最小公倍数,能比较熟练地进行约分和通分。
5、会进行分数与小数的互化。
6、培养灵活的思维方式和解决实际问题的能力,培养收集、处理问题的能力。
7、加强数学知识与现实生活的联系,培养学习数学的兴趣,获得学习的成功体验,增进学好数学的信心。
1、在具体情境中认识、理解单位“1”
2、在具体情境中进一步理解分数的意义。
3、通过自学理解分数单位的含义。
4、能用分数进行简单的表述和交流,提高数学应用的意识和能力。
5、了解分数的产生。
在具体情境中学习知识,通过自学学习知识。
6、感受和体会数学与生活的紧密联系,树立学习数学的信心。
同上。
教材第60页通过两幅插图1、古人度量物体时遇到的困惑,2、两个小朋友平均分一个物体的情境,揭示了分数产生的现实需要:在进行测量和分物时,往往不能正好得到整数的结果,这时常用分数来表示。
教材61页“举例说明1/4的含义”是想通过学生的实践来理解1、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。2、一个整体可以用自然数1来表示,通常把它叫做单位“1”。
教材62页“做一做”是对分数意义描述的具体化和巩固,也为紧接着学习分数单位提供具体的实例。结合做一做让学生理解分数单位。
“你知道吗”是对分数的写法的历史的介绍。
理解平均分,单位“1”,分数单位;理解平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。
理解平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。
实践法、讨论法、自学法。
课件(师),学生学习材料。
1/4,1/5,5/6,2/7,3/8。
读出以上各分数,并说各部分的名称。
教师课堂行为(注明时间)。
完成目标。
课前活动:检查预习内容。
师课件介绍:分数的演变经历了这样一个过程。
学生读出分数,说明各部分的名称。
学生观看课件演示。
完成。
目标5。
一、了解分数的产生。
2、课件演示平均分东西的情境:
提出问题:小男孩能分到个石榴,每人平均分到块月饼,包饼干。
3、师小结:在进行测量、分物时,往往不能得到整数的结果,这时常用分数来表示。
(如学生说出小数,教师也应肯定学生的想法)。
4、教师直接板书课题,指出本课的学习目标:
分数的意义,分数单位。
学生说说自己的想法。
学生回答。
完成。
目标5、6。
二、学习分数的意义。
1、举例说明1/4的含义(板书1/4)。
生演示完过程后,教师引导提问:
每一个图形为什么要分成4份?(引导学生说出分母是4,所以分成4份)(板书分成几份)。
课件或学生实物对比,这样分(不平均分)行不行?(引导学生说出必须平均分)(板书平均分)。
为什么只涂了1份?(分子是几就涂几份)(涂其他处行吗?)(板书取几份)。
课件演示:
4根香蕉,一盘面包,12块水果糖。
一排书,一把荔枝。
两道文字叙述题。
师根据学生回答,演示分法。
(4)如果老师把图形或物体平均分好,你还能找到相应的分数吗?
(第3、4环节在汇报时)应引导学生说一说怎样做的。
2、总结(结合课件)。
一个物体、一些物体等都可以看做一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”
把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。
三、巩固练习。
1、把一个蛋糕()分成5份,这样的3份就是()。
2、下面的涂色对吗?
平均分和不平均分的情况。
3、把一堆苹果平均分成6份,2份是()的2/6。
4、5厘米长的一条线段,其中1厘米是这条线段的1/5,这条线段是单位1、()。
5、把单位1平均分成9份,7份是()。
6、先判断下图能表示哪个分数,再圈一圈。
1/51/21/3。
(10个草莓)。
7、把一根木料平均分成4段,每段是这根木料的()。
8、把一根7米长的木料平均分成4段,每段是这根木料的()。
9、把一根8米长的木料平均分成4段,每段是这根木料的()。
每段是()米。
10、一包饼干有12块,平均分给3名同学,每人分得这包饼干的(),每人分得()块。
11、把一根9米长的木料等距离锯了10次,每段是这根木料的()。
12、一盒巧克力共有16块,平均分给4名同学,每人分得()块,每人分得这盒巧克力的(),每块巧克力是这盒巧克力的()。
四、学习分数单位。
2、习题检验学习效果。
64页第8题。
学生比较分数单位的大小。
师:谁决定分数单位的大小?分母越()分数单位越()。
五、拓展练习。
64页第七题。
阴影部分占全图的几分之几。
(1)学生利用学习材料表示出1/4。
(2)全班交流。
学生在教师引导下回答。
学生回答。
学生做练习十一的1——4题,汇报。
学生做题,汇报想法。
1、学生自读分数单位的定义。
学生做题。
完成。
目标246。
完成。
目标1。
完成。
目标124。
完成。
目标3。
完成。
目标16。
平均分分子是几就取几份。
分母是几就平均分成几份。
作业设计。
(分层作业)。
分数的教学设计篇七
人教版《义务教育课程标准实验教科书·数学》六年级上册第10页例3,第11页例4。
【理论依据】。
力。
【教材分析】。
《分数乘分数》属于数与代数领域,是六年级上册第二单元《分数乘法》的教学内容。本节课是本单元的第二节课,是学生在掌握分数与整数相乘的基础上进行的,由于分数乘分数的意义是分数乘整数意义的扩展,且计算算理较难理解,这部分内容是本节课教学的重点也是难点。教材第10页例3从实际问题引入,用工作粉刷墙壁的图创设问题情境,给出条件,提出问题。
从解决“几分之一与几分之一相乘”到“两。
个一般分数相乘”,力图让学生经历一个由浅入深、由易到难的探究过程。为突破重难点,教材用操作(涂色)的方法引导学生探索计算方法,让学生根据操作的过程与结果推导出计算方法,经历算理的推导过程。教材第11页例4从蜂鸟飞行的实际问题引入。通过计算,使学生明确分数乘分数计算也应该先约分再乘,这样计算比较简便,并掌握怎样先约分。教材接着提出“5分钟飞行多少千米?”的问题,这是分数乘整数的计算,前面已经学过,这里一方面把分数乘法的两种形式集中呈现,加强它们之间的对比与联系;另一方面提出分数和整数相乘怎样约分的问题,使学生知道分数的分母与整数可以直接约分。
【学生分析】。
(1)理解分数乘分数意义和算理。(3)掌握分数乘分数的计算方法。
(2)会用分数乘法的有关知识解决生活中的基本数学问题。
2、过程与方法。
3、情感、态度与价值。
(1)体验分数乘分数计算方法的探索性,经历知识生成的过程,激发学习数学的兴趣。
(2)体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。
【教学重点】。
多媒体课件【学具准备】。
1张长10厘米,宽8厘米的长方形纸条。【教学过程】。
分数的教学设计篇八
《分数乘分数》的教学重点是理解分数乘分数的意义,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。
整个的教学过程分为四个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、先教学例4,以1/2×1/4和1/2×3/4为例,让学生先根据图形理解算式的意义,再根据图形写出计算结果。
三、然后教学例5,以2/3×1/5和2/3×4/5为例,让学生根据算式在图中画斜线表示计算结果,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。
四、最后通过观察例4和例5算式和结果,概括出分数乘分数的计算方法。
通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,数形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的.分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
分数的教学设计篇九
教学目标:
1、理解整数除以分数的意义,通过合作交流自主探究整数除以分数的计算方法。
2、在经历探索整数除以分数的过程中,体验算法多样化,体会转化思想和数形结合的思想。
3、在解决现实问题的过程中,感受数学与生活的密切联系,体验学数学的乐趣。
教学过程:
一、开门见山直导新课。
1、大胆猜测验证结论。
师:哦,大家都认为可能是,整数除以分数就等于整数乘分数的倒数。
1师:大家的猜想对不对呢?举例验证一下,比如2你认为怎样来算呢?
5师:你可以画图说明,也可以同桌交流师画图。
111师:你的意思是说,2就是求2里面有几个,我们先求1里面有5个,55511那么2里面就有10个,所以2=2×5=10(板书算式)。
2师:2÷的结果等于多少呢?自己试一下。
52222师:2÷,就是看2里面有多少个,因为1里面有2.5个,2.5个还可555552525以说1里面有个,2里面就有2个,所以2÷=2×=5(板书)。
25252师:你是根据商不变的性质来计算的(板书过程)。
2、总结算法。
12师;观察2和2÷的计算方法,你有什么发现?
55111师:(手指题)你发现了5和互为倒数,2÷等于2乘的倒数。
5555225师:指第二题发现和互为倒数,2除以等于2乘。
2552师:通过这两道题的验证,发现我们的猜想是正确的,一块来说怎样计算整数除以分数。
三、全课小结。
通过今天的学习,你有什么收获?
师:你说(我们通过猜想,验证学习了新知)师:你们不但学习了知识,还学到了学习方法。
师:带着我们的收获,进入下面的练习吧师:第一题基础练习,大家做的又对又快,真棒。
师:第二题变式练习:火眼金睛辩对错,通过这道题告诉大家,做题时被除数不变,除数变倒数。应该一变二倒三约份四计算。师:第三题拓展练习,课下解决一下吧。师:今天这节课我们就上到这,下课。
分数的教学设计篇十
1.通过练习,使学生巩固对异分母分数加减法的理解,进一步提高计算能力,进一步增强数感。
2.通过练习练习,使学生能用分数加减法解决一些实际问题,进一步提高解决问题的能力,发展数学应用意识。
3.使学生在学习活动中进一步感受数学学习过程的探索性,获得成功的乐趣和体验。
难点重点:巩固对异分母分数加减法的理解,进一步提高计算能力
难点:综合运用知识解决问题
准备
挂图
环节过程
目标教师活动学生活动教学反思
2.指导完成练习十四第5题。
(1)学生完成后展示学生作业,交流计算结果。
(2)指导探索规律
教师指出:分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分子的和;分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分子的差。
(3)请学生举出几个类似的可以用这样的规律计算的算式。
学生独立完成左边两组题的计算。
学生进行观察,并在小组中说说自己的发现,再在全班进行汇报交流。
学生明确规律后根据规律直接写出右边两组题的结果。
学生举例,互相交流。
教学环节过程目标教师活动学生活动教学反思
综合练习
课堂总结
板书设计通过第6,7题的练习提高学生估计及对计算结果的把握能力,进一步增强数感。
通过练习,提高学生综合运用数学知识解决实际问题的能力。
通过观察实物图进行估计,再利用估计的数据解决相关问题,培养学生收集信息,选择信息去解决问题的能力。
通过课堂总结帮助学生对本节课要掌握的知识进行梳理。
1.完成练习十四第6题。
学生判断后教师组织汇报交流,让学生说说自己的想法。
教师帮助学生进行归纳:分数是否接近1/2,看分子是否接近分母的一半;分数是否接近0,看分子是否接近0;分数是否接近1看分子与分母是否很接近。
2.完成第7题。
教师组织汇报交流,追问:你是怎么想的?
让学生通过计算来验证自己的估算是否正确。
3.指导完成练习十四第8题。
(1)理解题意,明确两个量杯中各有多少毫升水。
(2)指导方法:400毫升和800毫升应该等于多少升呢?你是怎样想的?
4.指导完成练习十四第9题。
(1)理解题意。
(2)指导方法:估计一下每种蔬菜摆放的面积大约各占货架的几分之几?你是怎样想的?
(3)让学生独立完成(2)(3)题的计算,教师组织交流结果。
通过练习,你有什么收获?在解决问题时要注意什么?
作业:完成补充习题第41页
异分母分数加减法
1/2+1/3=(2+3)/(2×3)
1/2-1/3=(3-2)/(2×3)
接近0:1/10,2/25
接近1/2:4/7,9/20,7/15
接近1:8/9,11/13
学生在小组中进行判断,说说自己的想法。
学生在小组中先估计,然后汇报交流自己的想法。
学生独立完成计算,并与估算结果比较估算是否正确。
学生观察图片,先得出两个量杯中分别有2/5升,4/5升,再独立完成(1)(2)问题的解答。
学生在小组中进行讨论交流,指名上台指图说说自己的想法。
学生独立完成(2)(3)题的计算,并进行汇报。
学生自由发言。在分数大小比较的练习中可以渗透类似的题目,让学生用运用估算的方法比较大小,提高学生综合运用知识的能力。
教学环节过程目标教师活动学生活动教学反思
教学环节过程目标教师活动学生活动教学反思
教学环节过程目标教师活动学生活动教学反思
分数的教学设计篇十一
教材分析:
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
一、谈话激趣,复习辅垫。
1.师生交流。
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)。
师:老师查到了一些资料,我们一起来看一下。(课件出示)。
2.复习旧知。
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答。
生回答后出示:儿童的体重×5(4)=儿童体内水分的重量。
35×5(4)=28(千克)。
师:谁还能根据另一个信息写出等量关系式?
成人的体重×3(2)=成人体内的水分的重量。
2.揭示课题。
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、引导探究,解决问题。
1.课件出示例题。
2.合作探究。
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3.学生汇报。
生1:根据数量关系式:儿童的体重×5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)。
生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。
28÷5(4)=35(千克)。
4.比较算法。
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)。
5.对比小结。
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1)看作单位“1”的数量相同,数量关系式相同。
(2)复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)。
三、联系实际,巩固提高。
1.(投影)看图口头列式,并用一句话概括题中的等量关系。
(1)。
(2)。
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?
3.对比练习。
(1)一条路50千米,修了5(2),修了多少千米?
(2)一条路修了50千米,修了5(2),这条路全长是多少千米?
(3)一条路50千米,修了5(2)千米,还剩多少千米?
分数的教学设计篇十二
人教版《义务教育课程标准实验教科书·数学》六年级上册第10页例3,第11页例4。
【理论依据】。
力。
【教材分析】。
《分数乘分数》属于数与代数领域,是六年级上册第二单元《分数乘法》的教学内容。本节课是本单元的第二节课,是学生在掌握分数与整数相乘的基础上进行的,由于分数乘分数的意义是分数乘整数意义的扩展,且计算算理较难理解,这部分内容是本节课教学的重点也是难点。教材第10页例3从实际问题引入,用工作粉刷墙壁的图创设问题情境,给出条件,提出问题。
从解决“几分之一与几分之一相乘”到“两。
个一般分数相乘”,力图让学生经历一个由浅入深、由易到难的探究过程。为突破重难点,教材用操作(涂色)的方法引导学生探索计算方法,让学生根据操作的过程与结果推导出计算方法,经历算理的推导过程。教材第11页例4从蜂鸟飞行的实际问题引入。通过计算,使学生明确分数乘分数计算也应该先约分再乘,这样计算比较简便,并掌握怎样先约分。教材接着提出“5分钟飞行多少千米?”的问题,这是分数乘整数的计算,前面已经学过,这里一方面把分数乘法的两种形式集中呈现,加强它们之间的对比与联系;另一方面提出分数和整数相乘怎样约分的问题,使学生知道分数的分母与整数可以直接约分。
【学生分析】。
(1)理解分数乘分数意义和算理。(3)掌握分数乘分数的计算方法。
(2)会用分数乘法的有关知识解决生活中的基本数学问题。
2、过程与方法。
3、情感、态度与价值。
(1)体验分数乘分数计算方法的探索性,经历知识生成的过程,激发学习数学的兴趣。
(2)体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。
【教学重点】。
理解分数乘分数的算理并能正确计算。【教学难点】。
理解分数乘分数的算理。【教具准备】。
多媒体课件【学具准备】。
1张长10厘米,宽8厘米的长方形纸条。【教学过程】。
分数的教学设计篇十三
1、了解分数的产生,理解分数的意义和单位1的含义,掌握分数单位。
2、通过活动,引导学生经历探究分数意义的过程,在经历分数的意义和单位1的探求过程中,培养学生抽象、概括、分析和推理的能力。
3、通过对分数的意义和单位1的探求,培养学生的钻研精神和合作意识,体验数学与生活的密切联系。
教学重点:建立单位1的概念,理解分数的意义,自己发现分数单位。
教学难点:理解单位1的概念。
师:把两个苹果平均分给两个小朋友,每人分几个?把一个苹果平均分给两个小朋友,每人分几个?(能用整数表示吗?)。
小结:在进行测量、分物或计算时往往不能正好得到整数的结果,这时就产生了一种新的数,叫分数。板书课题:分数的产生及意义。
(1)明确分数的产生及意义。
(2)理解分数的意义和单位1的.含义。
出示1/2,关于分数,你们已经知道了哪些知识(分数由几部分组成,各部分的名称。)。
利用手中的学具表示分数1/4。
(1)请同学们利用手中的学具折一折,分一分,涂一涂,表示出1/4.
(2)小组的同学互相说一说,1/4表示什么意思。
学生动手操作,教师巡视。
(1)把一张圆形纸平均分成4份,每份是这个圆的1/4.
把一张正方形纸平均分成4份,每份是这个正方形的1/4.
把一条线段平均分成4份,每份是这条线段的1/4.
把4个三角平均分成4份,每份是4个三角的1/4.
把8个圆平均分成4份,每份是8个圆的1/4.
(2)像一张圆形纸、一张正方形纸等都是一个物体(板书:一个物体);4个三角、8个圆等是一些物体(板书:一些物体)。一个物体和一些物体都可以看成一个整体。
(3)一个整体可以用自然数1来表示,通常把它叫做单位1,(板书:单位1)。
分数的教学设计篇十四
在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。
结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。
在数学学习过程中培养分析能力、知识的迁移能力、推理能力。
教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。
教学难点:对分数除以整数的算理的理解。
多媒体课件,折纸。
教学教材第30页例1。
教师:把一张纸的平均分成2份,每份是这张纸的几分之几?
教师:你会列式吗?(启发学生列出算式。)。
教师:你会计算吗?请你试一试,然后在组内交流一下你的想法。
预设结果:
1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。
2.把平均分成2份,每份就是的,就是;用算式表示是:。
【设计意图】该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。
教师:你能通过折纸的方法来验证你的结果吗?(指导学生动手操作:拿出事先准备好的一张纸,先折出这张纸的涂上阴影,然后再把阴影部分平均分成2份。)。
预设:学生可能会做出如下两种图示:
教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。
结合图(1),引导学生说理:把平均分成2份,就是把4个平均分成2份,1份就是2个,就是。
结合图(2),引导学生说理:把平均分成2份,每份就是的,就是。
教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。
【设计意图】分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。
教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?
请你折一折、画一画,自己看图写出计算结果。想一想,你会选择哪一种折法呢?
教师:你会用刚才的'方法说明计算结果吗?
预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。
教师引导学生折一折、画一画,或者根据教材第30页图示进行填空,写出计算结果。
教师:通过刚才的折纸操作和上面的算式,你发现了什么规律?
预设结果:
1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。
2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。
教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。
【设计意图】通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。
教师:请你独立思考并完成教材第30页“做一做”。
【设计意图】对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。
1.教师:请你完成教材第34页练习七第1、2题。
先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。
2.教师:请你完成教材第34页练习七第4题。
左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。
3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。
引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。
教师:今天我们共同学习了什么知识?你有什么收获?
分数的教学设计篇十五
1、这节课是在数与代数这个板块中,在课标教学中要求百分数和分数、小数的联系的基础上,根据实际情况的需要把百分数、分数互相转化。
2、学习本节课的内容是掌握百分数与分数互相转化的方法,为百分数的计算和解答百分数应用题打下基础,培养学生在观察,比较,合作交流中发现互化的规律;培养逆向思维能力和勤于思考,勇于探索的优良品质。
这节课是学生在以前学过小数与分数互化的基础上教学,因此学生在学习本课内容对学生来说并不会很困难,学得比较灵活,知识点掌握比较好。在学习新课程中很有必要引导学生复习百分数的三种写法,分数化小数,百分数化小数的知识和方法;在教学中运用小组讨论,合作交流,互相探究,以学生为主体的教学方式。
知识能力目标:
理解、掌握百分数和分数互化的方法,并能熟练运用。
过程方法目标:
1、在掌握百分数化分数方法的基础上,利用逆向思维发现分数化百分数的.规律和方法,感受数学知识间的联系和区别。
2、利用已有知识迁移、类推、发现百分数与分数互化的规律和方法。
情感态度目标:
通过合作交流、探索发现等数学学习活动教给学生学习方法、渗透数学思想方法,培养学生勤于思考、勇于探索、合作交流的优良品质。
教学重点:
通过合作交流、探索发现百分数与分数互化的规律和方法。
教学难点:
通过合作交流、探索发现百分数与分数互化的规律和方法,并能熟练运用。