八年级数学教案反思(优秀19篇)
教案是教师为指导教学活动编写的一种规范文本。教案的编写要重视学生的合作学习和探究学习,培养学生的团队合作能力和创新思维。教案范例中所呈现的教学思路和方法值得我们去借鉴和学习。
八年级数学教案反思篇一
《梯形》这节数学课是在八年级下学期的一节课。这个学段学生基础较好,上课很积极,有很强的表现欲,通过前一学期的培养,具有一定的独立思考和探究的能力。但这个学段的学生的口头语言表达能力方面稍有欠缺,所以在本节课的教学过程中,设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。由于学生在小学已学过梯形,特别是特殊的直角梯形和等腰梯形,并且生活中抽象成梯形的物品比比皆是,所以学生对梯形并不陌生。但对等腰梯形特征及相关规律并没有进行系统探索、归纳和总结,因此本课教学采用“观察——猜想——操作——证明”为主线的教学方法,在这个设计中,观察猜想表现的是学生的洞察力,操作的意义在于实验,它强化了对猜想的直觉,证明需要探索,可以激发和培养学生的创新意识和创新思维。
根据以上的分析我确立的教学目标是。
1、掌握梯形的相关概念和等腰梯形的性质,能正确运用等腰梯形的性质进行计算、推理。
2、经历观察、猜想、推理等过程,发展合情推理能力和语言表达能力,主动探究的习惯,逐步掌握说理的基本方法。
3、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,体会图形变换的方法和转化的思想.
4、通过探索等腰梯形的性质,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。
5、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。
本节课根据我对新课程的理解,主要是以课前送给学生的第一份礼物“在数学的天地里重要的不是我们知道什么,而是我们是怎么知道的”为设计理念。整堂课着重体现探究的主线,转化的数学思想,以学生为主体,采用“观察——猜想——操作——证明”为主线的教学方法,在这个设计中,观察猜想表现的是学生的洞察力,操作的意义在于实验,它强化了对猜想的直觉,证明需要探索,可以激发和培养学生的创新意识和创新思维。本节课我对我的设计比较满意的有以下几个方面:
1、导入环节我没有使用教材中的图片,而是学习了他人的创设创设情景给学生一份礼物——一个信封,里面装着我们研究过的各种特殊四边形和我们本节课要研究的梯形、等腰梯形、直角梯形,让他们打开分类,有神秘感,更能激发学生的研究兴趣,并且省时,能快速切入主题。我觉得课堂效果很好,达到了我的预计效果。
2、本节课的难点是解决梯形问题的基本方法:如何添加辅助线将梯形问题转化为平行四边。
形和三角形中去解决。突破的过程中我做了应有的点拨和铺垫,让学生回顾证明两角相等的常用方法,研究平行四边形时我们把平行四边形转化成了什么图形解决的,使学生有了一个大概的探究方向,不是毫无目的空泛的去凭空想象。
3、对于本节的习题设计我是本着为本节的重点、难点服务的原则,所以习题的设置充分体现了辅助线的重要作用,强化学生梯形辅助线的引法,并且一题多变,把梯形问题放到了平面直角坐标系中,转换了一个情境,但是解决问题的方法没变,并和已有知识相连,让学生觉得知识间是有密切联系的,要学会学以致用。
4、本节课我通过巧设问题情境,以开放、探究问题为引线,激发学生的好奇心和求知欲,坚持实施以学生自主探究为主的开放式教学,给学生充足的思考时间和充分的展示机会,点燃了学生思维的火花,课堂上不同层次的学生都有成功的体验,不同的人有不同的收获。通过这节课,使我深深体会到学生的创造潜力是金矿,就看教师如何去开采.给学生一个题目,让他们去探究;给学生一个冲突,让学生去讨论;给学生一个自由的发展空间,他们会回报你一个惊喜。
但是还是有一些遗憾,整节课仍有一少部分学生没有获得展示的机会,对他们难免会造成一定的思想惰性;另外在例题讲解后,由于时间有限,没有对这种辅助线加以强调。
八年级数学教案反思篇二
本节课本着“三为主,五环节”的教学模式,主要突出了学生的主体地位,教师的主导作用,学生学会学习为目的,数学落实训练为主线。
2、题目的设计与处理。
以问题串的形式抛出问题,从易到难,分解了难点,让学生在独立思考和合作交流中及解决了问题又实现了对新知的学习。,重视学生的学习过程,教师注重方法点拨,策略知道,规律型的东西的总结。
3、课堂氛围的转变。
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的。
思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,
学生与教师之间以“对话”、“讨论”为出发点,采用独立思考,以互助合作,讲台展示,屏幕讲解,等手段以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
4.对学生做出正确的评价。
对于学生的回答给予正确的评价,鼓励语言到位。
5.学生亮点:整堂课,学生的表现非常优秀,在一位女生讲解问题二的之前,我还担心她说不清,但是却把每个空都用等量关系先表达出来,然后又用分式或整式的形式填写,做到了“空空有等量,步步有依据”,她的回答太精彩了,同学们给了她热烈的掌声,所以我们一定要放开手,不要吝啬自己的“三尺讲台,让这块宝地变成学生的地盘。
师生关系:通过这节课,发现和学生的关系更亲近了,在课上老师和学生就像朋友,教师要走到学生中,聆听她们想法,并参与其中。征求她们的意见。
6.应急处理恰当:在这节课上,学生的积极性超出了课前设想,在处理“捐款问题”中,很多同学都直接站起来要回答问题,,因为这节课,他们表现的太优秀了,于是我征求其中一位同学的意见,问他可不可把这样的机会让他其他同学,他欣然的答应了,而且是让给了我们班最羞涩的一位男生,这时候我看着他怯生生的看我的眼神,我面带微笑说“李斐同学是比较羞涩的,但他学习认真刻苦,请同学们给他加油”这时候,教师想起了一片掌声,当他还是有点不好意思的将问题讲完的时候,我顺势说“他说的好吗”同学们都说好,于是又是一片掌声。当他回到座位要坐下的时候,我及时问了一句“有信心了吗”这次他的声音很响亮“有了”这样我和我的学生就完成了一次对性格胆怯的学生的信心教育,同时这样的处理方式又培养了同学们谦虚,谦让,团结互助的精神。
7.不足,由于时间原因,擂台大比拼没有能够圆满完成,本来是想过这道问题,让大家知道一到应用题可根据不同的等量关系列出不同的方程,并能够识别哪些是分式方程,一道题可以同时考核两个学习目标,并设想通过学生独立完成在小组汇总,让学生主动到黑板写自己的答案,来培养同学们积极进取,勇于竞争的意识和团结合作的精神。以后教学中要对时间还有好好把握,及时调整,收放自如。
八年级数学教案反思篇三
《轴对称》是人教版八年级的一个重要的教学内容。识别轴对称图形,找出常见轴对称图形的对称轴,感受图形的对称美是课程标准中对这一内容的要求。
本堂课我原本想借助多媒体技术从学生熟悉的生活入手,以“漂亮的”轴对称图形入手,让同学们能直观的感受和认识轴对称图形的特点。及培养学生关于数学美的数学特点。但由于四班的投影机不能用,最还只得选择以图片的方式,也达到了较好的课堂效果,只是缺少动感效果。
由于不能用多媒体,我就打印了一些轴对称图形的图片,上课时我让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形是否是对称的,并通过小组动手对折的方法操作来验证它们为什么是对称的,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,从感观上体会什么是“完全重合之后。我就可以给出“轴对称图形”的概念,随后我给出几组图形让学生判定是不是“轴对称图形”。让学生再次明确什么是“轴对称图形”。
在上一环节让学生对折,然后给出几组图形,让学生发生轴对称图形都是通过某一直线后,两部分会重合。那那条直线就显得很重要,让学生明白“对称轴”的重要性,也知道如何找对轴称。给出对称轴的定义后,我还是选择了几组有特点的轴对称图形,让学生找对称轴。并判断那一组图形当中是不是只有一条对称轴。再下一步,找出轴对称图形的所有对称轴。
对于这一点我是让学生自己以小组的方式来讨论,最后以小组汇报的方式让学生自己总结,最后由我自己来归纳总结。这样子一来可以让学生在课堂最后时间有兴趣学,也通过讨论让学生更加明白什么是轴对称图形及两图形关于某直线对称的定义。可以很好的取得教学效果。完成本课的教学任务。
在完成本节课的教学任务的时候,我还是注重了向学生介绍数学美的观点,以轴对称图形入手,然后介绍我们的证明的简结,论题的简洁……等等。本次课取的了比较好的教学效果。
八年级数学教案反思篇四
整式的乘法是七年级上学期的重点内容,而整式的乘法运算法则是以幂的乘法运算性质为基础的,所以学好幂的运算对后续内容的学习产生较大的影响。根据大多数学生在幂的运算学习中运算法则的应用不熟练,运算符号的确定易错的问题,本节课通过典型例题帮助学生在进一步提高运算能力并能进行法则的灵活应用。
依据普陀区中学数学教学常规实施要求:复习课教师应遵循“循环出现、螺旋上升、不断深化”的认知规律。
本课在实际教学中,一方面由典型基础题帮助学生回忆幂的运算法则,再通过分析幂的运算法则的特征解决易错题;同时在各例题的设计上层层推进。
例1单用同底数幂的运算法则解决对于底数不相同但互为相反数的幂的乘法运算;
例3在对知识点进行系统整理后,综合运用幂的三条运算法则及合并同类项的知识点进一步强化练习,提高综合运算能力;最后由一题两解引导学生逆用法则简化运算。回顾整节课,学生用数学语言概括知识点的能力、综合计算能力有较明显的提高,并能较熟练逆用法则简化运算及解决一些问题。但在学生自主小结中,回顾知识点情况较多,质疑及自身感悟较少,应引导学生感悟数学思想,由此使学生形成数学价值观。
我想将以上问题改进后,必将能逐步达到二期课改的发展积极的情感态度和价值观这一要求的。
八年级数学教案反思篇五
结合数学内容,布置有个性发展的兴趣作业,培养学生的创新能力。
在初二上期,同学们对乘方知识掌握比较牢固之时,我给学生留了一道作业:
观察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
…
猜想:当有n项立方相加时的计算结果是_________。
第二天过去了,没人应答;第三天过去了,没人应答;第四天,有几位同学找到我,递给我答案:
当我点头示意时,他们竟高兴得欢呼起来,甚至有一个同学竟哽咽起来。是啊!同学要通过观察、思考,再通过猜想,探索规律,从而完成从特殊到一般的创新过程,而且跟应该注意到学生这方面的数学基础,很大程度都还不具备,但却能超出个人能力完成任务,实属不易。更难能可贵的是,学生的创新意识得到突破,创新能力得到了提高,这是何等的重要啊!
兴趣就是最好的老师。让学生通过自己钻研所得到的结果肯定是印象深刻的,以往的经验告诉我很多学生之所以害怕学习数学,就是因为他们经常体验不到成功的喜悦,没有成就感,只是在感受到学习数学的失败,无论家长、老师如何引导,学生都会产生强烈的自卑感,数学学习无法正常进行。我本人也欣赏成功教学模式,让每一个层次的学生都能够感受到学习的成就感,课堂上的一个小问题可能就会点燃学生思维的火炬。
八年级数学教案反思篇六
通过例题由我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。
这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。
在本课的教学过程中,我认为应从这样的几个方面入手:
1、分式方程和整式方程的区别;
2、分式方程和整式方程的联系;
4、对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
课堂效果:在这节课上,11班学生状态非常好,所有的学生都能积极思考,踊跃回答问题,感觉这节课的效果还是不错的。
八年级数学教案反思篇七
在新课程改革背景下的生物课堂教学中,教学生"学会学习"已成为现代教育的重要特征。预习就是一种行之有效的学习方法,是培养自学能力的有效途径。现代教学论认为,教学的基本任务之一,就在于培养学生的能力,而培养学生独立获取知识的自学能力又是其中的重要内容。然而。预习又是不少同学所忽视的。如何在教学中指导学生掌握预习方法,激发学习动机,提高自学能力而达到教学目的?下面就谈谈我的一些体会。
预习的过程就是自学的过程,就是凭自己已有的综合能力独立地发现问题、分析问题、解决问题的过程,就是学生独立理解、识记知识的过程。预习是学习的极为重要的阶段,它的特点是先人一步,它的本质是独立学习。从这个意义上讲,预习就是学习的第一核心。因此,课堂教学应紧紧的抓住了这一点,并且高于这一点。我们在一般教学中的常用的预习就是让学生自己看看课本,或者这节课没事干了让学生预习预习下节课内容。
1学生要注意各个学科孰轻孰重,注意时间的分配。
2给学生一种预习的思路。可以给学生提示一些知识点。
3让课代表抄一下这节课的学习目标。
4老师晚自习可以去辅导学生,让学生有一些预习的思路。
5保证充分的时间,时间是预习的保证。
这样,使教师在课堂上讲的时间少了,学生自己学习训练的`时间多了,学生获得了主体地位,课堂教学过程大部分是学生自学过程,符合学生认知学习规律。真正实现课堂教学以“自主,合作,探究”为主要学习方式。
八年级数学教案反思篇八
(1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2)在课堂教学设计中,尽量为学生提供“做中学”的.时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3)“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才得以发展。
八年级数学教案反思篇九
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的`解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。
讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
八年级。
将本文的word文档下载到电脑,方便收藏和打印。
八年级数学教案反思篇十
新课程改革进行地如火如了荼,教学模式也随之一改再改,日见丰富。新课程、新标准、新要求……一切都是新的。数学教学也不例外。如何在数学教学中脱陈出新,在课堂中给学生以充分发挥余地,从而得到锻炼,达到基础知识、能力培养的效果,下面就《实数》这一节谈一谈。
这一节课的教学目标是会用二次根式乘除法法则在实数范围内进行有关实数的简单四则运算。在教学中让学生经历了探索法则的过程,渗透从特殊到一般的认识事物的规律。但不能忽略学生的实际能力,设计的手段与学生不能分离。
在教学活动中,不能过于简单或复杂,设计简单时,学生轻易就找到了答案,就会产生骄傲和自满情绪,渐渐对参加活动失去了兴趣,对以后教学产生不良后果,而设计复杂时,学生产生畏难情绪,不利于调动学生的学习积极性,在教学中既要考虑到学生的基础情况,又要考虑到调动学生学习积极性、主动性,所以教学设计很重要。
今后,在教学中,课堂设计上要多下功夫,要根据学生的能力设计出符合学生实际情况的`知识,结合教材,注意难易程度,调动学生学习的主动性,发挥他们的潜能,达到预期的效果。
八年级数学教案反思篇十一
围绕空间与图形领域的教学内容,我们进行了有主题、有实践、有反思的案例研究,通过课堂这个充满创造的教学领域,获得了一些认识。
1.空间与图形的学习应该在活动中建构。
例如在教学东南西北时,学生要掌握这四个方位之间的结构:东与西相对,南与北相对;东南西北是依顺时针方向旋转的。这个原理光靠讲解是没用的,我们就把学生带到操场上,让学生在现实空间环境中通过活动来体验这四个方位的内在结构。特别是让学生探究当一个方向确定后,如何来辨别其他三个方向,以此体验顺时针以及方位的顺序。再如在教学三角形“任意两边之和大于第三边”这条原理时,我们按照教材的要求分两个层次教学:先是让学生从五根小棒中任意抓三根围一围,让学生直观感知到有些是可以围成的,有些是围不成的,同时使学生产生一种空间直觉,当两条较短的边合起来小于最长边是围不成的,当两条较短的边合起来大于最长边是可以围成的;接着让学生边围边有序地记录每根小棒的长度,并对此进行必要的分类;最后让学生在空间直觉引领下形成的三边关系几何模型和基于数据寻找三边关系的代数模型这两者的相互作用中抽象出三角形三边之间的关系。从以上两个片断中我们可以看出,只有在操作与实践活动的探究中才能把握几何空间特征和性质的实质,也就是把握空间既要有活动,又要有思考。
2.动态表象能引发学生的空间想象。
例如在圆的认识教学中,通过研究动态的圆来把握实质,其中有两个环节:环节一是让学生用图形纸片研究半径和直径有无数条,并且在同一个圆中所有的半径与直径都相等。在把圆形纸片反复对折的过程中让学生想象会折出多少条半径和直径,有些学生想象成有无数条,有些学生进而认为半径的条数应该是直径条数的两倍,这当然涉及到无限与有限的概念,可见动态研究能引发学生的思考;环节二是把两个小球分别系在一根绳上和一根橡皮筋上,通过不断加速的转动让学生想象,小球划出的图形是什么形状的,为什么一个是圆,一个不是圆,由此引导学生体验圆的本质特征:到定点的距离等于是长的点的轨迹。再如在第一学段教学平移时,引导学生闭着眼睛想象当金鱼的嘴向前移动一格,这条金鱼也向前移动了一格;嘴再向前移动一格,金鱼也向前移动一格,在这样的想象过程中,使学生把部分与整体在平移运动中融合起来,只有达到这样的认识,由点的移动距离来确立物体的移动距离才能得以内化。又如在研究三角形“两边之和大于第三边”时,设计了一组运动的拼搭游戏,三条线段,两条是分开的,让学生想象能否围成一个三角形;再进行变化,把其中一条缩短,能否围成三角形;再把缩短的一条增长,能否围成三角形,第三种情况两条短边之和正好等于第三边时也不能围成三角形,这时让学生展开想象,如果其中一条短边增长一点点,你很难想象到的一点点,你说这时能否围成三角形,让学生在这样的想象中构筑自己的心理图像,由此进一步理解这一原理。这三个案例中都用到了动态的想象,这种想象中不仅包含着图形的变化,更加蕴含着一种数学思考。按照皮亚杰的研究,动态表象是学生数理——逻辑经验生成的源泉,静态表象只能产生物理经验,而空间观念不仅仅是一种印象,更是一种思考,是一种逻辑,是一种内在的把握,所以说几何动态是几何观念形成的源泉。
3.知识是过程与结果的双重建构。
新课程强调学生在学习过程中的感受与体验。所以在编写中为了加强教学的探究性,很多地方都只是展示了知识生成和教学活动的过程,对基本的几何知识和概念都不直接出示。那么,一个章节、一节课的教学究竟要达到什么目标,要总结到什么程度,我们在实践中作了一些探索,也走过了一些弯路。例如我校有一位年轻教师上面积和面积单位这一课时,提供了大量资源和素材让学生围绕物体表面和平面图形,通过看一看、摸一摸、画一画、想一想、比一比把握其大小,应该说学生的活动和体验也较丰富。课后凌老师给我们评课时也充分肯定了这一点,但同时提出了一个建议:是否在学生大量生动的实践活动和感受体验的基础上,引导学生进行必要的抽象和概括,提升到物体表面和平面图形的大小叫面积。这样既有丰富的过程,又有基本的抽象,过程与结果之间相互作用,使学生的理解既稳定又开放,既抽象又具象,由此所形成的认知结构也更有张力。
在案例研究中我们还思考了一些诸如通过空间记忆丰富表象,由此产生组合和联想,最终才能达到想象;空间中既有逻辑推理,更有直观推理和似真推理;解决实际问题、设计现实作品能使学生领悟到空间中的各种关系等等。
八年级数学教案反思篇十二
在教学手段方面,充分利用黑板,演示画图过程供学生观察,体现教师的示范作用.
通过本课学习,学生应该能准确掌握轴对称,对称轴和两图形轴对称的概念,经历了动手画图、观察发现、归纳等一系列活动能较好地掌握轴对称的性质,并会运用轴对称的性质作出已知图形关于某直线成轴对称的方法.通过一系列探索活动,学生再次感受数学知识融于生活实际,体验数学学习的快乐。
八年级数学教案反思篇十三
通过八年级数学的教学,在教学实践中我觉得教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。
在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。使大家都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。教学中,激发学生参与热情的方法很多。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。坚持这佯做,可以逐步强化学生的参与热情。
参与知识形成发展的全过程,尽可能增加学生的参与机会。在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。
通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。和谐的师生关系便于发挥学生学习的主动性、积极性。
现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进取、朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。交往沟通、求知进取、和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。
通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力。教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。例如:学生学会一个内容后,教师就组织学生进行小结,让学生相互交流,鼓励并指导学生结合自己的实际情况。总结出个人行之有效的学习方法,对自己的学习过程进行反思,学生可以适当调整自己的学习行为,进而提高学生的参与能力。
实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。反思对学生思维品质的各方面的培养都有作积极的意义。因此,在不增加学生负担的前提下,要求作业之后尽量写反思,利用作业空出的反思栏给老师提出问题,结合作业作出合适的反思。对学生来说是培养能力的一项有效的思维活动,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实意义。
八年级数学教案反思篇十四
回顾等腰三角形的知识内容,从问题中激发学习新知识的欲望,引入新课。在复习回顾等腰三角形的知识时,有这样一题:等腰三角形是轴对称图形,对称轴有条。引起学生的争论,提出了新课的学习任务,结合前置学习,完成新知识的学习。
在新课知识学习时,等边三角形的对称轴是什么和等腰三角形对称轴的条数这两个问题,通过对学生的不同见解或不成熟的看法的争论得到强化。
利用几何画板展示问题,能够更好地进行题目的变化,在图形的变化过程中感受研究方法的不变,几何量关系的不变;更好地揭示了图形中的旋转变化,训练学生的识图能力;更好地用动态的观念和方法认识题目,为今后研究动态型几何问题作一些准备。学生面对新的学习媒体,学习热情比较高涨,旋转进行的全等变换有较为深刻的感受,翻折进行的全等变换也做得比较好(体现在提升学习的最后一题)。
本课还有一个难点是学生对三个三角形连续全等的书写,利用优秀同学的示范,学生亲自书写训练,相互评价提高的作用还可以更好地发挥作用,同备课组有老师用的是两个三角形全等,另一组全等同理推出的方法处理这个问题,这种处理方法也是可以介绍给学生的。
充分利用证得的全等得到边相等、角相等进行后面的问题的研究也是学生必须强化的意识。
八年级数学教案反思篇十五
我上的“三角形”这节课,研究三角形按边的特征认识三角形并进行分类。整堂课的设计体现以教师为主导,学生为主体,使学生在教师的引导下动手操作,积极思考,与同学之间交流,展示自我的过程,是让学生用内心创造与体验学习数学。
教学三角形这节课,探究新知阶段我认为处理得比较好。为使学生学会有目的、有规律地探究,采用“引——扶——放”教学手段,让学生在师生互动,生生互动,合作探究中体验感悟三角形围成的过程,并感受到学会用科学的数学思维进行有规律地探究,能围出尽可能多的不同种类的三角形,大大激发了学生的学习兴趣,培养了学生思维的有序性和探究能力。再通过小组讨论、交流、归纳出三角形按边分类及三角形按边特征命名,真正让学生动眼、动手、动口、动脑参与获取知识的过程,学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。
最后让学生在猜想中探究、生成。本节课中学生用三根小棒围出了尽可能多的不同种类的三角形,为防止知识的负迁移,我提出了猜想的话题:任意三根小棒都能围成三角形吗?然后让学生带着对问题结论的不同猜想和对正确结果的渴望,再次实验操作,得出不是任意三条边都能围成三角形的,催发学生生成了对三角形三边长度之间关系正确而又具有个性的认识,使学生意识到三角形中还藏着好多知识,正等待我们去探究。
八年级数学教案反思篇十六
教学中采用了学生自主学习的教学方式。
在导入新课时,创设了一个学生生活实际中常常见到的问题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣。紧接着在教学中利用类比方法,让学生通过类比旧知识学习新知识。教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的学习与掌握。通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中发挥了他们的主观能动性,感受了立方运算与开立方运算的互逆性,并学会了从立方根与立方是互逆运算中寻找解题信息途径。
在教学中安排了讨论数的立方根的性质,让学生计算正数、0、负数的立方根,寻找它们各自的特点,通过学生交流讨论活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程。教学中注意为学生提供一定的探索和合作交流的空间,在探究活动的过程中以展学生的思维能力,有效改变学生的学习方式。
最后给学生一展身手的机会,教学中给予学生充分的思考讨论的时间,让他们自己探索并总结出两个互为相反数的立方根之间的关系,并归纳平方根与立方根的异同。
八年级数学教案反思篇十七
在教学中,我先通过生活中的实物图形引出梯形的定义,并由学生介绍梯形的有关概念。我们学习平行四边形时,通常会通过添加辅助线转化为三角形。
在例题处理上,我以题组训练的方式出现。从学生熟悉的一个图形出发,放手让学生独立完成对该题目的分析和证明,老师在中间又可以把相关的基本知识点做些复习和回顾。在熟悉图形的基础上,注重图形中所隐含的其它结论。让学生学会不要用孤立的眼光去看一道题,而是要学会去观察出结论之间的相互联系,能用联系的眼光去解决新的问题。这是几何学习中一种非常重要的方法。
本节课的练习环节,我设计了让学生思维跳跃的部分。进行几何题基本条件的`变更,及一题的多种添加辅助线方法证明,对于学生的思维能力有一个非常高的要求。同时也在告知学生:几何的学习是永无止尽的,希望同学们学习几何不要仅仅是为了完成一道道题,而是应该从不同的角度去考虑问题。
上完课后,我发觉自己在教学上还有许多需要改进的地方。
八年级数学教案反思篇十八
通过八年级数学的教学,在教学实践中我觉得教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。
就学习数学而言,学生一旦学会,享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。使大家都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。
从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。教学中,激发学生参与热情的方法很多。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。坚持这佯做,可以逐步强化学生的参与热情。
在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。
通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。和谐的师生关系便于发挥学生学习的主动性、积极性。
现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进取、朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。
八年级数学教案反思篇十九
1、本节课在改革教法,优化教法方面作了一些尝试。在教学中,采用了“观察——猜想——验证”的方法,让定理的教学充分展现知识的.发生、发展过程,既对定理的产生有探索过程,又对论证方法有发现过程,既教发现,又教证明。
2、在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨,给学生留有较充分的时间去探究各个性质定理,进一步提高学生分析问题、解决问题的能力。由于定理是学生自己探讨发现的,因此,学生用起来更加得心应手。而后通过对比练习,再次熟悉,使学生的认识不断深化,提高层次,逐步提高学生的知识水平和能力水平。
3、在以后的几课时里,由学生讨论课本例、习题,或独立作业,教师适当点拨。在证明命题的过程中,学生自然将各条性质进行对比和选择,或对一题进行多解,便于思维发散,不把思路局限在某一性质上的运用上。学生在不同题目的对比中,在一题不同解法的对比中,能力真正得到提高。