圆锥的体积教案(热门22篇)
教案是教师为指导教学活动而编写的一种计划性文件。把握教学进度,合理安排学习内容,确保教学的连贯性和系统性。请大家参考下面的教案范本,了解一下如何设计一份高质量的教案。
圆锥的体积教案篇一
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)。
(1)底面积是5平方厘米,高6厘米,体积=?
(2)底面半径是2分米,高10分米,体积=?
(3)底面直径是6分米,高10分米,体积=?
3、认识圆锥(课件演示),并说出有什么特征?
二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)。
学生回答,教师板书:
圆柱------(转化)------长方体。
圆柱体积计算公式--------(推导)长方体体积计算公式。
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)。
(学生得出:底面积相等,高也相等。)。
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)。
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)。
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)。
a、谁来汇报一下,你们组是怎样做实验的?
b、你们做实验的'圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)。
教师:同学们得出这个结论非常重要,其他组也是这样的吗?
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)。
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)。
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)。
(教师给体积公式与“等底等高”四个字上连线。)。
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3。
=底面积×高×1/3。
v=1/3sh。
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。
课件出示:
想一想,讨论一下:
(1)通过刚才的实验,你发现了什么?
(2)要求圆锥的体积必须知道什么?
学生后讨论回答。
三、应用求体积、解决问题。
1、口答。
(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?
2、出示例题,学生读题,理解题意,自己解决问题。
a、学生完成后,进行小组交流。
b、你是怎样想的和怎样解决问题的。(提问学生多人)。
c、教师板书:。
1/3×19×12=76(立方厘米)。
答:它的体积是76立方厘米。
3、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)。
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)。
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
5、比较:例1和例2有什么不同的地方?
(2)例1是直接求体积,例2是求出体积后再求重量。
圆锥的体积教案篇二
1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
圆锥的体积教案篇三
1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。
3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。
圆锥的体积教案篇四
教学内容:
教科书第20~21页例5及相应的试一试,练一练和练习四的第1~3题。
教学目标:
1.组织学生参与实验,从而推导出圆锥体积的计算公式。
2.会运用圆锥的体积计算公式计算圆锥的体积。
3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。
4.以小组形式参与学习过程,培养学生的合作意识。
5.渗透转化的数学思想。
教学重点:
理解和掌握圆锥体积的计算公式。
教学难点:
理解圆柱和圆锥等底等高时体积间的倍数关系。
教学资源:
等底等高的圆柱和圆锥容器一套,一些沙或米等。
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)。
2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)。
3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)。
5.它们的体积之间到底有什么关系呢?
二、实验操作、推导圆锥体积计算公式。
1.课件出示例5。
(1)通过演示使学生知道什么叫等底等高。
(3)实验操作,发现规律。
(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的圆柱和圆锥都有这样的。关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
2.教师课件演示。
3.学生讨论实验情况,汇报实验结果。
4.启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积1/3=底面积高1/3。
用字母表示:v=1/3sh。
5.教学试一试。
(1)出示题目。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、发散练习、巩固推展。
1.做练一练第1.2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3。
2.做练习四第1.2题。
学生做在课本上。之后学生反馈。错的要求说明理由。
四、小结。
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
学生交流。
五、作业。
练习四第3题。
圆锥的体积教案篇五
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)。
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)。
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积=底面积高。
用字母表示:v=sh。
8.教学例l。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
圆锥的体积教案篇六
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
圆锥的体积教案篇七
美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的.实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。
圆锥的体积教案篇八
教学反思:
练习课应该怎样上?是不是学生只要会做书上的题目呢。我觉得应该根据学生学习情况和教学内容进行合理的拓展和有针对性的练习。
圆柱、圆锥体积的综合练习是学生在活动中探索出圆柱、圆锥体积计算的方法和熟练掌握求圆柱、圆锥体积的'计算方法的基础上进行教学的。在本节练习课教学中,我让学生画草图帮助理解,经过学生自主探索与合作交流,学生在运用公式解决生活中的实际问题的能力上有了一定的提高。同时解决了与生活经验密切联系,具有挑战性的问题,让学生体验到了成功的快乐。
不足的地方:学生在审题时不能关注细节。
圆锥的体积教案篇九
教学内容:
教材第11~17页圆锥的认识和体积计算、例1。
教学要求:
1、使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2、使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3、培养学生初步的空间观念和发展学生的思维能力。
教具准备:
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:
教学难点:
理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
2、我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
二、自主探究:
1、认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2、根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3、利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4、学生练习。
口答练习三第1题。
5、教学圆锥高的测量方法。(见课本第17页有关内容)。
6、让学生根据上述方法测量自制圆锥的高。
7、实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)。
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
用字母表示:v=13sh。
8、教学例。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
圆锥的体积教案篇十
2、学生说,教师板书:
圆锥圆柱。
特征1个底面2个。
扇形侧面展开长方形。
体积v=1/3shv=sh。
二、提出本节课练习的内容和目标。
三、课堂练习。
(一)、基本训练。
1、填空课本1----2(独立完成后校对)。
已知:底面积、直径、周长与高求体积(小黑板出示)。
(二)、综合训练:
1、判断。
(2)长方体、正方体、圆柱和圆锥的体积公式都可用v=sh。
(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升。
(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米。
2、应用:练习四第45题任选一题。
3、发展题:独立思考后校对。
四课堂小结:说说本节课的收获。
圆锥的体积教案篇十一
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、复习引新。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。
这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4.学生练习。
5.教学圆锥高的测量方法。(见课本第13页有关内容)。
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。
(3)实验操作,发现规律。
你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积。
=底面积高。
用字母表示:v=sh。
8.教学例l。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
1.做练一练第2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。
2.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
3.做练习三第3题。
让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
练习三第4、5题。
圆锥的体积教案篇十二
听了侯老师的《圆锥的体积》一课,收获很多,下面我想重点谈本节课的两点成功之处,希望能与大家一起探讨。
第一:为新知识的学习搭建合理平台。
主要体现在侯老师能够运用原有知识来推动新知识的学习,设计有奖问答和实验等手段,让学生大胆借鉴前面学习圆柱体积公式的方法来探究圆锥体积公式。利用迁移规律,让学生从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法,使新旧知识得到整合。这种借鉴的学习方法,不仅使本节课的教学变得轻松,同时有利于学生更深刻地理解和掌握这种学习策略,有利于学生的进一步学习和终身的发展。
第二:注重培养学生的实践能力。
这节课的重点是通过实验来探究圆锥体积公式的由来,侯老师主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做用装满小米的圆柱在空圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是特别设计了一组不等底或不等高的圆柱和圆锥来做倒米实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系。在实验前,让学生了解实验要求,并且提出三个实验目的:(1、圆锥的底面与圆柱的底面有什么关系?他们的高有什么关系?你是怎么知道的?2、圆锥的体积和与它等底等高的圆柱体积有什么关系?3、怎样计算圆锥的体积?计算公式是什么?)以实验目的为主线,让学生小组合作,通过动手操作,有眼睛观察,动脑筋思考,多种感官一起参与活动,由直观到抽象,层层深入,探索出圆锥体积公式的由来,从而理解和掌握了圆锥体积的计算公式,培养了学生的观察能力、操作能力和初步的空间观念,克服了几何形体公式计算教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,是一个探索者、研究者、合作者、发现者,并且获得了富有成效的学习体验。
不过这节课也存在一些不足,教学环节的衔接和时间的分配有些不恰当,教学方法没有多样化,欠缺改革创新。例如:在教学新课时,像传统教学那样,直接拿出圆柱和圆锥容器的教具,让学生根据实验要求和目的,进行倒米实验。我认为在实验前,一定要为学生创设良好的问题情景,如(你觉得圆锥体积的大小与它的什么有关?你认为圆锥的体积和什么图形的`体积关系最密切?猜一猜它们的体积有什么关系呢?你们想知道它们的关系吗?)通过师生交流、问答、猜想等形式,强化问题意识,激发学生的思维,使学生产生强烈的求知欲望。这时候,学生就迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣盎然。这样学生的思维被激活了,学习的积极性提高了,兴趣变浓了,课堂气氛变得热烈,那么教学效率,教学效果就可想而知了。
当然,我相信#老师通过这次的锻炼,在今后的教学道路上一定会越走越宽广。谢谢大家!
圆锥的体积教案篇十三
1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积,《圆锥的体积》教案设计及反思。.
2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。
3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法.
教学重点:圆锥的体积计算
教学难点:圆锥的体积计算公式的推导.
教学准备:圆锥形萝卜、绳子,每个小组一个计算器、等底等高的圆柱和圆锥容器模型、沙土水等。
一、复习导入。师:同学们,你们知道桌上那个白萝卜,它是什么形体吗?(圆柱体),现在,如是假设它的底面积是5平方厘米,高是4厘米,你怎样求它的体积呢?求出体积后,问:现在老师想请你们帮个忙,把它削成一个最大的圆锥,你们有办法吗?说一说什么样的圆锥体才算最大呢?(与原来的圆柱体萝卜等底等高)
二、探究新知1、实践猜想.师:好,现在请同学们动手削萝卜,比比哪一组削得最漂亮?学生削完后,问:谁来猜猜,现在削成的圆锥体积与刚才圆柱有什么关系呢?你是怎么猜测的?生1:我猜圆锥的体积可能等于原来那个萝卜体积的,就是5立方厘米。
生2:我猜圆锥的体积可能等于原来那个萝卜体积的,就是10立方厘米。我是根据我们以前学过的在长方形里剪一个最大的三角形,三角形的面积是长方形的,所以我认为圆锥的体积也是圆柱体积的。
生3: 我猜圆锥的体积可能等于原来那个萝卜体积的,就是6立方厘米,是把削去的萝卜拼起来和圆锥体萝卜进行比较,发现削去的部分的体积大约是圆锥体积的2倍。
生5:我可以把削成的圆锥与削去的萝卜都拿去称,再比较它们的重量。.
生6:我把圆锥体萝卜浸入盛有水的圆柱容器里,算出它的体积,再把削去部分的萝卜也浸入盛有水的圆柱形容器里,根据水面上升的高度求出它的体积就知道了。.
生7:我可以把刚才那个圆柱体萝卜和削成的圆锥休萝卜分别挖成空心的然后把空圆锥萝卜盛满水倒入圆柱体萝卜中,分别算出体积后进行比较。
生8:我可以用桌上的这些学具来验证。.再让学生比比哪种方法最合适?
4、解决问题,教案《《圆锥的体积》教案设计及反思》。课件出示例1,让学生独立完成。5、教师小结。
三、扩展应用。(一)、基本练习。1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?2、测量圆锥体学具,求出体积,并说说高是怎么量的?3、一个圆锥的底面积直径是20厘米,高是8厘米,它们体积是多少?(二)扩展练习。!、一个圆锥的体积是8立方分米,底面积是2平方分米,高是()分米?2、圆锥形的容器高12厘米,容器中盛满水,如果水全部倒入等底的圆柱容器中,水面高是( )
四、归纳小结。师:通过这节课的学习,你学会了什么?你是怎么学会的?
五、作业。
这节课,体现了以下几个特点:
一、在“动”中获新知。“动”是孩子的天性,每位孩子都充满了“动”的欲望。由于几何知识比较抽象,学生理解和掌握几何图形的概念、性质、求积公式、形成空间观念,都必须有大量具体的、形象的感性材料的积累。所以教材在编排这一知识块的时候,就已安排了很多的实践性练习。教学时,教者能充分利用这一特点,通过摆、剪、折、量、画、分割、拼合等操作活动,使学生获得鲜明、生动、形象的感性认识,在此基础上,抽象概括出圆锥的体积计算方法,形成正确的空间观念。
二、在“动”中求发展。在教学圆锥的体积时,教者先让学生观察并讨论推导圆锥体积公式的实验方法,当学生由于受圆柱体积公式推导方法的影响,思维受阻时,教者向学生提议:用桌上学具来验证。同时推荐一些实验用品:水或沙、尺等。让学生在实验中选择并设置疑问:圆锥体积与圆柱体积的关系。通过实际操作,学生不仅得出圆锥体积的计算公式。获得了知识的结果,而且经历了知识面发展、发生的过程,同时加强并巩固口头和书面表达能力,发展解决数学问题的能力,增进对数学的理解力。
三、在“动”中学会与他人合作。学习是学生主体的主动建构过程,其本质是让学生认识客观世界,把书本中的知识结构转化为自己的认知结构。这个过程是学生主体活动的过程,必须由学生亲身参与,学生在动手中运用感官参与学习,自觉主动地去操作、去学习,在浓厚的动手实践中不仅经历了知识的形成过程,而且也学会了如何与他人合作才能取得成功。
圆锥的体积教案篇十四
圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。
好的地方:
1、让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我让学生在课前自己先制作出等底等高的圆柱和圆锥型容器教具,让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,由此通过公式可以得出:
v圆锥=1/3圆柱=1/3sh(知道底面积和高)。
=1/3πr2h(知道半径和高)。
=1/3π(d*2)2h(知道直径和高)。
=1/3π(c*2*π)2h(知道周长和高)。
2、加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我让学生自己制作学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。
不足之处:
没有在制作学具时候,制作出等底不等高的圆柱和圆锥型容器教具,然后挑一组学生实验,得不出圆锥的体积是与它等底等高圆柱体积的三分之一的结论。所以,缺乏对比性,如果加入这个教具的话,更能让学生深知等底等高的重要性。
圆锥的体积教案篇十五
今天,上完《圆锥和圆锥体积》一课,收获很多。我们紧紧围绕教学目标,通过引导学生观察、猜测、操作、分析、推理、验证概括,引导学生经历认识圆锥和探索圆锥体积计算公式的过程,让学生亲历了知识的形成过程,让学生思维的火花绽放在手指上。在教学中主要突出了以下几点:
一、、引导学生经历猜想-------验证的探究过程。
在本节课的教学中,学生有了圆柱体积公式的基础,鼓励学生大胆猜想“圆锥的体积可能跟什么有关系?”并充分展示学生的思维成果“可能跟圆锥的底面积有关”“可能跟圆锥的高有关”“可能跟圆锥的侧面积有关”这些都是都是基于学生已有知识经验的一种猜想,不一定正确,要得出实验结论要通过实验来验证,很自然地引导学生经历猜想-----验证------得出结论这一探究过程。同时,为使学生产生认知冲突,课前我们为学生准备了有形的材料,(等底等高、等底不等高、等高不等底、既不等高也不等底四组圆柱和圆锥)这样的设计,让学生通过四次试验,发现每组中相同的情况:都有把空圆锥里盛满沙子,3次正好注满空圆柱的情况,而其他的实验室没有规律可循的,引导学生回头观察这种特殊情况圆柱和圆锥的关系,理解必须在等底等高的情况下,圆柱和圆锥才有倍数关系,独立完成导学案上的填空,完成圆锥体积公式的推导。这样的设计,为学生的主动探索和发现提供了时间和空间,有利于学生主动地建构数学知识,使得学生在独立思考、对比实验、讨论交流中提高数学素养。
二、在动手实验中,积累数学活动经验。
新课标指出:动手实践是学生学习数学的重要方式,数学活动经验的积累是提高学生数学素养的重要标志。在这节课中,我们安排分组实验,明确实验要求,学生通过实验,充分经历直观感知、观察发现、在教师引导的归纳类比数学活动中,得出只有在等底等高的情况下,圆锥体积才是圆柱体积的三分之一,没有这一前提条件,这个结论是不成立的。在知识建构的过程中,学生通过动手操作、合作交流的数学活动中,使得学生发现四组圆柱圆锥中共性的问题,初步建立数学模型,不断在“做”的`过程和“思考”的过程中沉淀数学活动经验,感受数学带来的成功的快乐和愉悦。
三、培养学生良好的数学习惯。
影出示习题:s=6.3平方米h=2米。
学生独立完成,黑板上展示了6.3×2×=4.2(立方米)后,才有学生补充:(1)6.3×2÷3=4.2(立方米)(2)6.3×2×=4.2(立方米),只是先把6.3和3约分,来丰盈我们的数学课堂,为我们的的课堂教学提供了新的资源,也为算法优化提供了素材。
回顾上过的这节课,总会留下一些缺憾:1、认识完圆锥的特征,丢掉了跟进练习,没能把和特征相关的知识及时巩固。2、学生的小组活动组织不够紧凑,实验活动用时稍长。留下的缺憾会成为我们会在以后的教学中努力改进,让我们的课堂涌动生命的活力。
学生的思路更清晰,学生思维的火花才会不断闪现。
圆锥的体积教案篇十六
1、情感目标培养学生探索合作精神。
2、知识目标理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,以及运用公式计算圆锥体积。
3、能力目标培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。
理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。
公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。
活动目的:激发求知欲望。
课件播放:春天到了,万物复苏,春笋也从睡梦中醒来,三只可爱的小熊猫来到竹林中踩竹笋,它们都踩到了一只竹笋。熊猫都都说:今天我踩的竹笋是最大的。熊猫眯眯听了不服气的说:谁说的,第一大的应该是我的竹笋。熊猫花花也不甘示弱的说:不对,不对,我的竹笋应该是第一大!
师:竹林里的争论还在继续着,同学们,到底三只熊猫的竹笋谁的最大呢?让我们来猜一猜吧!
师:我们光是猜,说服力并不强,那么能找到什么真正能解决问题的办法吗?
活动目的:通过师生、生生的'互动讨论、交流、探究,从而发现圆锥的体积和圆柱的体积有关。
1、出示课题。
2、找圆锥体和学过的什么体有相似之处。
3、猜一猜,圆柱的体积和圆锥的体积的关系。
圆锥的体积教案篇十七
1、推导出圆锥体积的计算公式。
2、会运用圆锥的体积公式计算圆锥的体积。
圆锥体积公式的推导过程。
一、板书课题
师:同学们,今天我们来学习“圆锥的体积”(板书课题)。
二、出示目标
理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。
三、自学指导
认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的'体积计算方法,并将例3补充完整。想:
1、圆锥的体积与圆柱的体积有什么关系?
2、圆锥的体积计算公式是什么?用字母如何表示?
5分钟后,比谁能正确地回答思考题并能做对检测题!
检测题
完成课本第34页“做一做”第1、2题。
小组合作,校正答案
后教
口答
小组内互相说。
当堂训练
1、必做题:
课本第35页第5、6、7题。(做在作业本上)
2、选做题:
有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)
圆锥的体积教案篇十八
教材第11~17页圆锥的认识和体积计算、例1。
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
理解和掌握圆锥体积的计算公式。
一、铺垫孕伏:
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)。
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)。
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的'圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
用字母表示:v=13sh。
8.教学例l。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
圆锥的体积教案篇十九
答案:
答案:
底面半径:6.28÷(2×3.14)。
=6.28÷6.28。
=1(米);
这堆大豆的重量:
13×3.14×12×0.6×580。
=3.14×0.2×580。
=0.628×580。
=364.24。
≈364(千克);
答:这堆大豆约重364千克。
答案:
(1)这个沙堆占地面积:
3.14×(8÷2)2,
=314×42,
=3.14×16,
=50.24(平方米);
(2)沙堆的体积:
三之一×50.24×3=50.24(立方米),
50.24×15=7536(千克);沙堆的重量:
答:这个沙堆占地50.24平方米,这堆沙子重7536千克.。
圆锥的体积教案篇二十
今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
1、教材分析。
“圆锥的体积”教学是在学生学习掌握了圆的周长、面积和圆柱的体积的基础上进行教学的,并且上节课初步认识了圆锥,本节教材内容突出了探索体积计算公式的过程,应注重发展学生的操作能力、实践能力、培养创新能力,为今后学生的深层次学习和自主发展打好基础。通过本节课的学习使学生掌握圆锥体积的推导公式以及运用公式解决一些实际问题。
2、学情分析。
学生以前学习了长方体、正方体、圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。但对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,教师应帮助学生理解。
3、教学目标。
根据教材的编写特点和意图,结合学生的认知特点,我把本课的教学目标确定为:
(1)知识目标:
通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。
(2)能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。(3)情感目标:
通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点。
教学重点:理解和掌握圆锥的特征、体积的计算公式。
教学难点:掌握圆锥高的测量方法和体积公式的推导过程。
5、教具准备。
多媒体、圆柱、圆锥、三角尺、直尺、水桶等。
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。让学生在实际操作的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
1、复习引入新课。
(1)多媒体展示圆柱图形让学生计算(学生回答并计算)。
(2)多媒体演示圆柱体的一个底面逐渐变小直到剩一个点为止这是什么图形这个图形怎么得来的,怎么求它的体积?(学生回答教师并书写课题)。
学生回答可能出现情况:(及时给于学生鼓励)。
说明:设疑激趣,激发学生探求新知的欲望。
2、动手操作获得新知。
(1)根据学生的回答让学生利用已有的教具(等底等高的圆柱和圆锥)小组进行动手操作探讨体积公式——这样做的目的:激发学生学习的兴趣,培养学生动手的能力和合作的能力(教师在教室中来回走动注意观察学生的操作及脸部表情,及时给于指导)。
(2)教师提问学生动手操作得出的结论。
(3)通过教师引导学生能够完整的总结出圆锥体积的计算公式。
教师板书圆锥体积计算公式:v圆柱=1/3v圆锥=1/3sh。
3、巩固练习。
(1)让学生先来解决刚开始的那个由圆柱体转换而来的圆锥体的体积。
(2)多媒体展示出三个图形:一题是书上的例题告诉底面直径和高的。
二题是告诉底面周长和高的。
三题是告诉底面半径和高的。
4、拓展延伸。
让学生小组合作测量教具中圆锥的体积并说出你的测量方法。
5、学生总结这节课所学内容。
我的板书简洁明了对整节课的学习起到画龙点睛的作用。
纵观整节课我通过创设情境、动手操作哦,调动学生的积极性,使学生最大限度的投入到观察、思考、操作、探究等活动中,亲身经历实践学习的过程。充分体现了新课程标准中提倡的“动手实践、自主探究、合作交流”的学习方式,让学生体验到学习成功的喜悦我的说课到此结束,谢谢!
圆锥的体积教案篇二十一
师:同学们,今天我们来学习“圆锥的体积”(板书课题)。
理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。
认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:
5分钟后,比谁能正确地回答思考题并能做对检测题!
检测题。
完成课本第34页“做一做”第1、2题。
小组合作,校正答案。
后教。
口答。
小组内互相说。
当堂训练。
1、必做题:
课本第35页第5、6、7题。(做在作业本上)。
2、选做题:
有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)。
圆锥的体积教案篇二十二
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
圆锥体积公式的理解,并能运用公式求圆锥的体积。
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。
试验探究法小组合作学习法。
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)。
2课时。
第一课时。
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)。
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)。
4、教师介绍数学专用名词:等底等高。
【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系。
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)。
3、小组汇报试验结论(提醒学生汇报出试验步骤)。
教学预设:
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)。
【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议。
【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
这节课你学到了什么呢?
1、做在书上作业:练习四第4、7题。
2、坐在作业本上作业:练习四第3题。