乘法分配律教学设计及反思(优秀13篇)
生命不息,总结不止。总结是我们对生活中所经历的事情进行回顾和总结的重要方式。在写总结之前,我们需要先梳理一下所要总结的事物的背景和过程。这些总结范文是作者从实际生活和工作中提炼出来的宝贵经验,非常值得我们借鉴和参考。
乘法分配律教学设计及反思篇一
北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。
1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
充分感知并归纳乘法分配律。
理解乘法分配律的意义。充分感知并归纳乘法分配律。
多媒体课件
本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
9x37+9x63
9x(37+63)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
9x37+9x63=9x(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为xx猜想。(板书:猜想)
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)
轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了xx猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,xx同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。
等号左边表示什么意思?等号右边表示什么意思?大家说的`意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。
在读这句话的时候,哪里应特别注意?
请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)x2534x72+34x28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
38x29+3843x102
(4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)
1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。
2、大家请到数学医院,帮老师判断对错。
3、完成连一连。(给一分钟思考时间,然后抢答)
4、完成填一填。(这道题我找表现最好的小组来开火车)
5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)
五、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?
请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
乘法分配律教学设计及反思篇二
:引导学生探究和理解乘法分配律。
感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
多媒体课件。
一、复习引入。
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究。
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算。
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25。
=6×25。
=150(人)。
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25。
=100+50。
=150(人)。
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习。
1、p27做一做。
验证:18x5-5x8(18-8)x5。
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。
教学目标:
知识与能力:。
1、在探索的过程中,发现乘法分配律,并能用字母表示。
过程与方法:。
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:。
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学过程:
一、复习引入,质疑猜想。
1、出示口算题:
师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+7572+493+2825×19×4。
12×125×8168×5×214×2=。
交流:你是怎样想的?
2、分组计算比赛。
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算。
第二组题目:45×12+55×1234×72+34×28。
第一、三组:(45+55)×12(72+28)×34。
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想。
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4(8+5)×4。
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)。
(2)用两种方法解答问题。
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)。
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)。
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律。
1、填一填:
4×(25+8)=__×___+___×__。
38×37+62×37=___×(___+___)。
502×19+11×502=___×(___+___)。
48×99+48×1=___×(___+___)。
a×b+a×c=___×(___+___)。
2、判断对错:
8×(125+9)=8×125+9()。
27×8+73×8=27+73×8()。
(12+6)×5=(12×5)×(6×5)()。
(25+9)×4=25×4+9×4()。
3、试一试。
(1)观察(40+4)×25的特点并计算。
(2)观察34×72+34×28的特点并计算。
4、分组计算比赛。
85×16+15×16(40+8)×25。
四、总结全课。
今天,我们又发现了什么?
五、课外思考。
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
乘法分配律教学设计及反思篇三
让学生在生动具体的情境中学习数学,这是新课标倡导的新理念。我联系学生的生活实际,创设了学生熟悉的购买家具的场景,配上我生动的语言叙述,一下子就把学生代入到了一个有数学味的问题情境中,吸引了所有学生的注意。紧接着的问题如果你是小红,你想买什么家具呢?根据小红家的需要,你们能提出哪些数学问题?更是激发了学生的思维,学生个个积极动脑,跃跃欲试。在学生充分提出各种问题的基础上,我选择了有代表性的一个问题让学生独立解决,极大地激发了学生的计算热情。这一环节的教学,让学生经历了因用而算、以算激用的过程,将算与用紧密结合。
首先让学生通过独立计算,交流计算方法,叙述计算过程等一系列的笔算乘法的技能训练,形成一定的算理。然后通过比较124和2132这两题,它们最大的区别是什么?在乘的时候,有什么不同呢?如果是四位数、五位数乘一位数,你认为该怎么乘呢?这两个问题的讨论、交流,引导学生进行整理反思,让学生能通过两位数乘一位数迁移到三位数乘一位数,进而自然联想到四位数、五位数乘一位数的计算方法其实都是一样的,从而帮助学生将零散的知识串起来,有利于学生数学模型的建立。
需要改进的地方是:在学生探索出笔算方法后,我因为担心学生没有听懂,怕学生做错,说错,故而引导太细,学生的学习主动性调动的不够。如果我能充分相信学生,大胆放手,让学生独立地去想,去做,去说,相信学生的。表现会更出色。
乘法分配律教学设计及反思篇四
教学内容:
北师大版四年级上册第四单元《乘法分配律》。
教材分析:
本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:
学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学过程:
一、复习引入,质疑猜想。
1、出示口算题:
师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+7572+493+2825×19×4。
12×125×8168×5×214×2=。
交流:你是怎样想的?
2、分组计算比赛。
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算。
第二组题目:45×12+55×1234×72+34×28。
第一、三组:(45+55)×12(72+28)×34。
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想。
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4。
(8+5)×4。
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)。
(2)用两种方法解答问题。
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)。
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)。
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律。
1、填一填:
4×(25+8)=__×___+___×__。
38×37+62×37=___×(___+___)。
502×19+11×502=___×(___+___)。
48×99+48×1=___×(___+___)。
a×b+a×c=___×(___+___)。
2、判断对错:
8×(125+9)=8×125+9()。
27×8+73×8=27+73×8()。
(12+6)×5=(12×5)×(6×5)()。
(25+9)×4=25×4+9×4()。
3、试一试。
(1)观察(40+4)×25的特点并计算。
(2)观察34×72+34×28的特点并计算。
4、分组计算比赛。
85×16+15×16(40+8)×25。
四、总结全课。
今天,我们又发现了什么?
五、课外思考。
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
板书设计:
(a+b)×c=a×c+b×c。
a×c+b×c=(a+b)×c。
(10+4)×2=10×2+4×2。
(45+55)×12=45×12+55×12(40+4)×25。
(72+28)×34=34×72+34×28。
(8+5)×4=(8+5)×434×72+34×28。
(6+4)×178=6×178+4×178。
乘法分配律教学设计及反思篇五
今天静下心来观看了省赛课中葛老师执教的.《乘法分配律》一课。她巧妙引领。葛老师非常自然的借助孩子们喜爱的农场游戏,引入问题“谁能帮老师算算一共有多少菜?你能列出综合算式吗?先求什么,后求什么?”一方面教师问题的指向性简练明确可以引导学生列出综合算式,另一方面借助情景能有效的帮助学生理解算式的道理,明确意义。更为巧妙的是此情景内容丰富可以列出不同的算式:
2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4为后面的“观察、分类和探究”做好铺垫。
大胆放手。在第一个“求菜”的情境中,是在教师的引导下学生顺利完成了学习的过程,然而后面的“求花”和“求果树”就是放手让学生自己探究了,很自然的激发了学生的探究欲望,分别列出了两组算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。
这样在学生喜爱的农场情景中,巧妙的引发出六道算式,为进一步的观察和探究埋下了伏笔。
得出6个算式后,葛老师再次抛出问题:“这六个算式让你分分类,你打算分几类?理由是什么?”然后葛老师又引导学生同桌先讨论,然后集体汇报,于无形中让学生经历了各个层面的探究活动。让学生观察——猜想——举例验证——,和从“特例”进行验证等一系列的活动,最后归纳出一普遍性的规律。
当结论得出后,葛老师并不是将字母表示进行简单的灌输,而是巧妙的借助点子图将用字母表示乘法分配律的过程变为因需而设,从而呼之欲出。最后教师还通过乘法的意义加深学生对乘法分配律的理解,并且教师还通过两组以前学过的两位数乘一位数和两位数乘两位数来打通乘法分配律与以前知识的联系。
总之,本节课在学习方式上自主学习与合作探究并存,在思维发展上,教师引导与放手相结合,整个学习过程,因需而设,充满了探究。
乘法分配律教学设计及反思篇六
教材分析:
乘法分配律是冀教版小学数学第八册第24、25页的内容,在此之前,学生已经学习了整数的四则混合运算,两三步运算的实际问题,以及加法减法的交换律与结合律。学生日后将要学习的是小数的四则混合运算及其简便运算,分数的四则混合运算及其简便运算,乃至方程。本课内容在学生的整个学习脉络中起着承上启下的作用。
学情分析:
1.学生已经掌握了类比、迁移的学习方法,有了一定抽象建模的活动经验,并形成了相应符号化的思想。
2.学生对乘法的意义有所理解,已经学习了长方形的周长、面积,四则混合运算以及加法乘法的交换律、结合律。
教学目标:
1.知识与技能目标:在计算、观察、交流、归纳等数学活动中,经历探索乘法分配律的过程。
2.过程与方法目标:理解并用字母表示乘法分配律,能运用乘法分配律进行简便运算。
3.情感态度价值观目标:在探索乘法分配律的'过程中,能进行有条理的思考,能清楚地表达发现的运算规律。
教学重点:
发现、概括乘法分配律并能初步运用规律进行简便运算。
教学难点:
1.从正反应用比较乘法分配律的外形结构,清晰深刻地构建乘法分配律的模型。
教学过程:
一、谈话导入,激发兴趣。
师:(出示算式102×25)同学们,你们能一眼看出答案吗?姬老师一下就知道它的答案是2550,想不想知道其中的奥秘?咱们赶快来探索探索吧。
设计意图:简单的导入,既调动了课堂的气氛,又为乘法分配律的简便运算打下了基础,由此自然地过渡到主体环节的学习。
二、创设情境,感知模型。
1.师:(播放视频)同学们,国庆前,学校刚刚举行的运动会,大家还记得吗?开幕式的团体操最后一个队形,需要在方队周围拉红色飘带。谁能来说一说图中的已知信息。
生:长12米,宽9米。
师:你们能帮老师算一算需要多少米吗?只列算式不计算。
根据图中的信息,学生会有不同的算法。
生1:(12+9)×2。
师:能给大家说说你的思路吗?
生1:先算一条长与一条宽的和,再乘2,就是周长。
师:跟他思路一样的孩子请举手。我们一起再说说他的思路好吗?
生齐声说。
师:谁还有不同的想法?
生2:12×2+9×2。
师:你能像刚才的孩子那样来说一说你的思路吗?
生2:先算两条长,再算两条宽,最后相加。
师:跟他思路一样的孩子请举手。我们一起再说说他的思路好吗?
2.师板书两个式子:你们猜猜这两个式子之间是什么关系吗?
生:相等。
师:猜测是科学发现的前奏,你们的眼睛已经看出了精彩的一幕,现在赶快在你们的练习本上验证一下。
学生通过计算汇报:两个式子的答案是相同的。
师:左右答案相同,它们中间可以用“=”连接起来。
设计意图:课程标准里面指出建立模型首先要从我们的现实生活中去抽象出数学问题,所以在这节课的设计当中,我是让学生回到自己现实的体育艺术节这样的一个情境当中去,然后抽象出我们的数学问题,从学生的旧知“周长”出发,以旧引新,让新知不新。由此,自然地过渡到第二个学习环节。
三、探究算理,初次建模。
(一)解决问题,发现规律。
生1:左右的运算顺序是不同的。
师:左边先算什么后算什么?右边呢?
生1:左边先算加法,再算乘法,右边先算乘法再算加法。
生2:左右参与运算的数是一样的。
生3:左右都有加号和乘号。
生4::左右的结果是相等的。
2.师:为什么相等,你能从乘法的意义上来说一说吗?
生:左边12加9的和乘2是21个2,老师右边12个2加9个2,也是21个2,所以它们肯定相等。
学生组内交流。
师与生共同总结:从左到右是括号内的加数都与括号外的“2”相乘,最后相加了,也就是(板书:两个加数分别与一个数相乘);而从右边变到左边,是右边这个相同的因数“2”,到了左边乘了剩下两个因数的和,也就是(板书:一个相同的因数乘其余两个数的和)。这就是乘法分配律。板书课题。
生:12和9。
师:谁又和谁配对了?
生:12和2配对,9和2配对。
师:原来这就叫分配呀。
(二)举例探索,掌握规律外形特征,灵活总结规律。
1.师:同学们,具有这样特征的式子,你们还能再写一写吗?请自选3个数,尝试写一写。
找两个同学板书自己写的算式,并读一读。师讲解左右如何变化。
2.师:同学们,如果老师给你一天的时间来写这样的例子,你们能写完吗?一年呢?
生:不能。
师:这样的式子有很多,怎么也写不完,所以他们中间必然存在一定的规律。
设计意图:在这一探究的过程中,探究问题的难度层层递进,学生人人参与,充分发挥各种感官的作用,成功在头脑中初步建立了乘法分配律的模型。由此,自然地进入下一个学习环节。
四、抽象概括,完善模型。
1.师:同学们,你们能用你们最喜欢的图形、符号、文字表示出这一规律吗?
师选择比较典型的答案写到副板书上。可再选择其中一个式子,引导学生从乘法分配律的概念上来解释。
2.师:同学们,现在你们知道这个规律到底是什么了吗?能不能用自己的话来说一说。
3.师引导规范学生的说法,即两个数的(和)与一个数(相乘),可以先把两个数(分别)与这个数相乘,再将两个积(相加),结果不变,这就是乘法分配律。
学生回答,师板书。
5.创设语境,加深记忆。
师:同学们,咱们把a和b看成是爸爸和妈妈,c看成我。爸爸和妈妈都爱我,等于爸爸爱我、妈妈爱我,也就是爸爸妈妈分别爱我。那么反过来,爸爸爱我,妈妈爱我,也就等于爸爸和妈妈都爱我。所以,a乘b的积加a乘c的积肯定等于a加b的和乘c。
设计意图:在这一探究过程中,渗透了由特殊到一般、再由一般到特殊的认识事物的方法,能够培养学生概括、分析、推理的能力。由此,自然地进入下一个学习环节。
五、回顾旧知,验证模型。
师:同学们,这个规律,我们是第一次和它见面吗?
出示ppt:1.两位数乘两位数2.周长3.组合图形求面积。
设计意图:在用旧知验证新知的过程中,加深了新旧知识的内在联系。
六、运用模型,体会价值。
(一)再现分配律,脑灵眼快。
(1)(48+52)×13=——×2+——×2。
(2)27×(16+30)=——×——+——×——。
(3)48×13+52×13=(——+——)×13。
(4)a×38+a×36=a×(——+——)。
设计意图:让学生初步的运用模型去完成,面向全体学生,使学生人人参与,灵活运用定律。
(二)巩固性练习,找朋友。
(48+52)×1348×13+52×13。
40×5+2×55×(40+2)。
74×(19+1)74×19+74。
40×50+50×9040×(50+90)。
27×(16+30)27×16+30。
17×(5+5)17×5+17×5。
设计意图:为简算打下基础。
(三)提高辨析,火眼金睛。
4×(30+25)=4×30+25。
20×5+20×8=20×(5×8)。
(5+24)×8=5×24+8×24。
74×(20+1)=74×20+74。
设计意图:提高学生的思维辨析能力,能辨析各种常见错误。
(四)探究性练习,挑战自我。
(1)102×25=。
设计意图:引导学生用乘法分配律解算导入时的式子,既照应了开头,又使学生明白,我们为什么要学习乘法分配律。
七、全课小结。
乘法分配律教学设计及反思篇七
1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
2、能根据算式各自的特征,选择使用、灵活计算。
3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!
4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!
深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
1、能根据算式各自的特征,选择使用、灵活计算。
2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的转化能力!
环节
教师活动
学生活动
设计意图
一、回顾引入
1、我们昨天学了……,请写出依据(字母表达式)
2、看着这个字母表达式,你想说点什么?
1、学生一起回答省略部分
2、学生各自在自己草稿本上写出字母表达式
3、让学生充分表达!
以忆引练,为接下来的练习做知识铺垫准备!
二、开展练习
分别出示:
1、基础题
(1)选择题
(2)填空题
(3)用简便方法计算
1、口答选择题
2、笔写填空题
3、比赛方式完成简便计算
1、通过选择和填空两种题型,让学生进一步体会乘法分配律的现实意义及其算式结构。
2、训练准确简便计算能力,也是巩固新课掌握的计算方法
小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。
2、提高题(计算各题,怎样简便就怎么算)。
1、先标出你认为能够简便计算的题
2、动笔计算,并验证自己的观察
养学生观察力、细心力、分析力、和计算灵活性。
小结:一看、二想、三算
3、拓展题(能快速算出下面各题吗?)。
用作选做题:做你会计算的题
训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要
小结:变看似不能简便计算为能够简便计算
三、全课总结
1、涵盖小结内容
2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。
乘法分配律教学设计及反思篇八
教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、通过观察、分析、比较,培养学生的分析、推理和概括能力。
3、发挥学生主体作用,体验探究学习的快乐。
教学准备:课件、口算题、例题、练习题等。
教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。
教学流程:
一、设疑导入。
生:可以使计算简便。
师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)。
二、探究发现。
1。猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)。
师:这道题算得怎么不如刚才的快啊?
生:它和前面的题目不一样。
师:好,我们来看一下它与前面的题目有什么不同?
生:前面的题都是乘号,这道题既有乘号还有加号。
生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。
师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。
生:(10+4)×25=10×25+4×25。
师:为什么这样算哪?
师:你是怎么知道的?你知道什么是乘法分配律吗?
生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。
师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)。
2。验证。
师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)。
师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)。
3。结论。
生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。
师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)。
师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?
(a+b)×c=a×c+b×c。
师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。
三、练习应用。
(生练习应用定律。)。
师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
四、总结。
师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)。
反思:
本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:
一、主动探究,实现亲身经历和体验。
现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。
二、多向互动,注重合作与交流。
在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。
乘法分配律教学设计及反思篇九
义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律。
教材分析。
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
学情分析。
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
教学目标。
1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的`联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
教学重点。
教学难点。
教学准备。
课件习题卡。
教学过程。
一、结合实事创设情景,引入新课。
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
二、合作交流,探索发现新知。
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知――乘法分配律。
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书p36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结。
四、分层练习,逐级达标。
1、填一填:习题卡第一题。
巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。
学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。
2、看一看:习题卡第二题。
3、应用:请生完成书p38第7题。使学生感受学习乘法分配律的用处是使计算简便。
五、回顾课程,进行总结。
同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?
乘法分配律教学设计及反思篇十
《乘法分配律》是四年级数学下册第三单元中的一节教学内容,一直以来的教学中,我认为这节课的教学都是一个教学难点,学生很难学好。
我认为其中的不易可以从三个方面来说:其一,例题仅仅是分配律的一点知识,在课下的练习题中还存在不少乘法分配律类型的题(不过,这好像也是新课改后教材的表现)。如果让学生仅仅学会例题,可以说,你也只是学到了乘法分配律的皮毛;其二,乘法分配律只是一种简单的计算方法的应用,所有用乘法分配律计算的试题,用一般的方法完全都可以计算出来,也就是说,如果不用乘法分配律,学生完全可以计算出结果来,只不过不能符合简便计算的要求罢了,问题是学生已学过一般的方法,学生在计算时想的最多的还是一般的计算方法;其三,本节课的教学灵活性比较大,并没有死板板的模式可以来死记硬背,就是学生记住了定律,在运用时,运用错了,也是很大的麻烦,从题目的分析到应用定律都需要学生的认真分析及灵活运用。
针对以上自己分析可能出现的问题,,确定从以下两个方面时行教学:
第一,以书本为依托,学好基础知识。
有一句话叫做“万变不离其宗”。虽然课下还有多种类型题,但它们都与书上的例题有着亲密的联系,所以教学还是要以书本为依托。在教学中,我引导生通过观察两个不同的算式,得出乘法分配律的用字母表示数:a×b+a×c=a×(b+c),在引导学生经过练习之后,我还强调学生,要做到:a×(b+c)=a×b+a×c。用我自己的话说,就是:能走出去,还要走回来。再次经过练习,在学生掌握差不多时,简单变换一下样式:(a+b)×c=a×c+b×c,走回来:a×c+b×c=(a+b)×c。如此以来,学生算是对乘法分配律有了个初步的认识,知道是怎么回事,具体的运用还差很远,因为还有很多的类型学生并不知道。于是我就在第二节课进行了第二个方面的教学。
第二,以练习为载体,系统巩固知识。
针对乘法分配律还有多种类型,例题中也没讲到的情况,我上网查资料,加上并时的一些认识,把乘法分配律分为五类,并对每类进行简单的分析提示,附以相应的练习题印发给学生,让学生进行练习。
乘法分配律教学设计及反思篇十一
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析。
学生分析。
我班学生中,近一半学生思维活跃,知识面比较广,多数学生学习数学的兴趣很浓,参与数学探索的意识也很强,并能够联系实际利用所学知识解决生活中的数学问题。但有的个别学生基础较差、有的学生学习习惯不好、占班级人数三分之一多,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标。
教学目的:
知识与能力。
1、在探索的过程中,发现乘法分配律,并能用字母表示。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点。
教学重点:理解并掌握乘法分配律――发现问题、提出假设、举例验证、探索出乘法分配律。
乘法分配律教学设计及反思篇十二
知识与技能:引导学生探究和理解乘法分配律。
过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
教具学具:多媒体课件。
教学过程。
一、复习引入。
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究。
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算。
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25。
=6×25。
=150(人)。
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25。
=100+50。
=150(人)。
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习。
1、p27做一做。
验证:18x5-5x8(18-8)x5。
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。
因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
乘法分配律教学设计及反思篇十三
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表。
达数学规律的意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
一:创设情境导入。
提问:长方形的面积怎样求?
指明回答。
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)。
学生动手操作。
(课件出示两个长方形组合的动画)。
二:自主探索,交流合作。
1、交流算法,初步感知。
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法。
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导。
(课件出示两种解法)。
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会。
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律。
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)。
三:实践运用,初步理解。
1、想想做做1。
学生自主完成,组织交流。
12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)。
2、想想做做2。
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个。
74,也就是74.
第四小题要和想想做做题1的第二小题做对比。
四:拓展延伸,内化新知。
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小。
学生反馈,引导说出可以重叠比较。学生动手实践。
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。提问:如何求多出来的面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的`延伸。五:解决实际问题,内化重点难点。
想想做做题5。
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个算式之间的联系。
反思:。
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。