八年级数学的教案(模板17篇)
教案是教师为了实施教学活动而书写的一种规范性文件。教案应考虑学生的学习难点和容易出错的地方,提供相应的辅导措施。教案的设计要注重教学过程的省时和效益,提高学生的学习效果和成果。
八年级数学的教案篇一
3、使学生初步养成正确思考问题的良好习惯。
一元一次方程解简单的应用题的方法和步骤。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题。
例1某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3。
答:某数为3。
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4。
解之,得x=3。
答:某数为3。
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系、因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。
师生共同分析:
1、本题中给出的已知量和未知量各是什么?
2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500。
所以x=50000。
答:原来有50000千克面粉。
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);。
(4)求出所列方程的解;
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5、
其苹果数为3×5+9=24、
答:第一小组有5名同学,共摘苹果24个、
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、
三、课堂练习。
3、某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数、
四、师生共同小结。
首先,让学生回答如下问题:
1、本节课学习了哪些内容?
2、列一元一次方程解应用题的方法和步骤是什么?
3、在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆、
五、作业。
1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?
2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
5、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元、求得到一等奖与二等奖的人数。
八年级数学的教案篇二
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
启发式、讲练结合。
(一)复习提问。
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念。
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,
表示的是算术平方根。
(二)引入新课。
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式。
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次。
根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
(1)(2)(3)(4)。
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式。
(2)-3x0,x0,即x0时,是二次根式。
(3),且x0,x0,当x0时,是二次根式。
(4),即,故x-20且x-20,x2.当x2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
(1);(2);(3);(4)。
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+30,得。
(2)由,得3a-10,解得。
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)。
1、式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。
2、式子中,被开方数(式)必须大于等于零。
(四)练习和作业。
1、判断下列各式是否是二次根式。
分析:(2)中,,是二次根式;(5)是二次根式。因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。
2.a是怎样的实数时,下列各式在实数范围内有意义?
教材p.172习题11.1;a组1;b组1.
八年级数学的教案篇三
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图。
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。
明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本。
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习。
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议。
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结。
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
八年级数学的教案篇四
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
八年级数学的教案篇五
1、经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。
2、经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
将实际问题中的等量关系用分式方程表示。
找实际问题中的等量关系。
有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。你能找出这一问题中的所有等量关系吗?(分组交流)。
如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________。
从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程______________________。
学生分组探讨、交流,列出方程。
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程。
分式方程与整式方程有什么区别?
(3)根据分式方程编一道应用题,然后同组交流,看谁编得好。
本节课你学到了哪些知识?有什么感想?
八年级数学的教案篇六
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
八年级数学的教案篇七
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点。
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程。
教学环节:
活动1:复习引入。
看谁算得快:用简便方法计算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
设计意图:
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题。
p165的探究(略);
2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知。
看谁算得准:
计算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根据上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知。
比较以下两种运算的联系与区别:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
八年级数学的教案篇八
调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数。
例如:求一组数据3,2,3,5,3,1的众数。
解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。
又如:求一组数据2,3,5,2,3,6的众数。
解:这组数据中2出现2次,3出现2次,5,6各出现1次。
所以这组数据的众数是2和3。
【规律方法小结】。
(1)平均数、中位数、众数都是描述一组数据集中趋势的量。
(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。
(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。
探究交流。
1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?
解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。
总结:
(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
(3)中位数的单位与数据的单位相同。
(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。
课堂检测。
基本概念题。
1、填空题。
(1)数据15,23,17,18,22的平均数是;
(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。
基础知识应用题。
2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。
八年级数学的教案篇九
正比例函数的概念。
2、内容解析。
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
1、目标。
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析。
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
八年级数学的教案篇十
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学的教案篇十一
1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2、使学生理解判定定理与性质定理的区别与联系。
3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
1、通过“探索式试明法”开拓学生思路,发展学生思维能力。
2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。
通过一题多解激发学生的学习兴趣。
通过学习,体会几何证明的方法美。
构造逆命题,分析探索证明,启发讲解。
1、教学重点:平行四边形的判定定理1、2、3的应用。
2、教学难点:综合应用判定定理和性质定理。
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。
八年级数学的教案篇十二
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
平行四边形的判定方法及应用。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(5)你还能找出其他方法吗?
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
八年级数学的教案篇十三
一、教学目的:
1、掌握菱形概念,知道菱形与平行四边形的关系;
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;
二、重点、难点。
1、教学重点:菱形的性质1、2;
2、教学难点:菱形的性质及菱形知识的综合应用;
三、例题的意图分析。
四、课堂引入。
1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
《18、2、2菱形》课时练习含答案;
5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知识点:等边三角形的性质;菱形的判定。
解析:
分析:此题主要考查了等边三角形的性质,菱形的定义、
6、用两个边长为a的等边三角形纸片拼成的四边形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知识点:等边三角形的性质;菱形的判定。
解析:
分析:本题利用了菱形的概念:四边相等的四边形是菱形、
《菱形的性质与判定》练习题。
一选择题:
1、下列四边形中不一定为菱形的是()。
a、对角线相等的平行四边形b、每条对角线平分一组对角的四边形。
c、对角线互相垂直的平行四边形d、用两个全等的等边三角形拼成的四边形。
2、下列说法中正确的是()。
a、四边相等的四边形是菱形。
b、一组对边相等,另一组对边平行的四边形是菱形。
c、对角线互相垂直的四边形是菱形。
d、对角线互相平分的四边形是菱形。
3、若顺次连接四边形abcd各边的中点所得四边形是菱形,则四边形abcd一定是()。
a、菱形b、对角线互相垂直的四边形c、矩形d、对角线相等的四边形。
八年级数学的教案篇十四
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式。
问题农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示。
根据这些数据估计,农科院应该选择哪种甜玉米种子呢?
来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。
意义:用来衡量一批数据的波动大小。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
(1)研究离散程度可用。
(2)方差应用更广泛衡量一组数据的.波动大小。
(3)方差主要应用在平均数相等或接近时。
(4)方差大波动大,方差小波动小,一般选波动小的。
例题:在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:
甲163164164165165166166167。
乙163165165166166167168168。
哪个芭蕾舞团的女演员的身高比较整齐?
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4。
乙:9、5、7、8、7、6、8、6、7、7。
经过计算,两人射击环数的平均数相同,但s,所以确定去参加比赛。
3.甲、乙两台机床生产同种零件,10天出的次品分别是()。
甲:0、1、0、2、2、0、3、1、2、4。
乙:2、3、1、2、0、2、1、1、2、1。
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
八年级数学的教案篇十五
教学目标:
1、知道一次函数与正比例函数的意义.
2、能写出实际问题中正比例关系与一次函数关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于一次函数与正比例函数概念的理解.
教学难点:根据具体条件求一次函数与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法。
教学过程:
1、复习旧课。
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三。
2、引入新课。
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)。
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成()的形式.一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的一次函数.特别地,当b=0时,一次函数就成为(是常数,)。
3、例题讲解。
例1、某油管因地震破裂,导致每分钟漏出原油30公升。
(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式。
(2)破裂3.5小時后,共漏出原油多少公升。
分析:y与x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的cd随身听(价值1680元)。
(1)列出小丸子的银行存款(不计利息)y与月数x的函数关系式;。
(2)多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱。
例3、已知函数是正比例函数,求的值。
分析:本题考察的是正比例函数的概念。
解:
4、小结。
由学生对本节课知识进行总结,教师板书即可.
5、布置作业。
书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论。
八年级数学的教案篇十六
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
解分式方程的一般步骤。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(学生板演)。
1、由上述学生的板演归纳出解分式方程的一般步骤。
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
2、范例讲解。
(学生尝试练习后,教师讲评)。
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)。
2、解分式方程的步骤、
巩固练习:p1471t,2t、
课堂小结:解分式方程的一般步骤。
布置作业:见作业本。
八年级数学的教案篇十七
三角形中相关元素的概念、按边分类及三角形的三边关系。
2.内容解析。
本节课的教学重点:三角形中的相关概念和三角形三边关系。
本节课的教学难点:三角形的三边关系。
二、目标和目标解析。
1.教学目标。
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。
(2)理解并且灵活应用三角形三边关系。
2.教学目标解析。
(1)结合具体图形,识三角形的概念及其基本元素。
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。
三、教学问题诊断分析。
四、教学过程设计。
1.创设情境,提出问题。
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。
2.抽象概括,形成概念。
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。