人教版数学轴对称图形教案(汇总17篇)
教案是教师为了开展教学而编写的一种书面指导材料,它起着指导和规范教学活动的作用。编写教案时,要注重活动设计和资源使用,培养学生的动手实践能力。以下是小编为大家整理的一些优秀教案范例,供大家参考借鉴。
人教版数学轴对称图形教案篇一
教学内容:
义务教育课程标准实验教材数学第六册56—61页内容。
教学资源分析:
本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。
教材第一道例题首先出示了一组实物图片,要求学生观察并说说它们的共同特征,初步感知“这些物体都是对称的”,并要求学生结合自己的生活经验再找出一些具有对称特征的物体,在小组里交流。教材这样安排的主要目的是帮助学生感受生活中的对称现象。接下来,教材把上面的实物图形进一步抽象为平面图行,引导学生通过对折发现轴对称图形的基本特征,并初步描述轴对称图形的概念。第二道例题则让学生利用已有的对轴对称图形的初步认识,用不同材料、不同方法“做出”轴对称图形。以活动来帮助学生进一步积累感性认识,丰富对轴对称图形的体验,锻炼学生的实践能力。“想想做做”安排了形式多样、内容丰富的训练帮助学生加深对轴对称图形的认识,体会数学与生活的广泛联系。
教学目标:
1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。
教学重点:
使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:
引导学生在自己的操作活动中发现和认识轴对称图形的一些基本特征。
教学准备:
多媒体课件一套,每组有不同的图形一套,想想做做2所要求的字母一套,小剪刀,彩纸,水彩画颜料,钉子板等等。
一、猜一猜——激趣导入。
师:今天,老师带来了一些有趣的物体,不过只有一部分,请你猜一猜,它们分别是什么?
(多媒体出示:枫叶、蜻蜓、天平等物体的一半,让学生猜一猜,猜中就出示物体的全幅图)。
师:是啊,这些物体可真有趣,你知道它们有趣在哪里吗?
(让学生自由说)。
小结:是的,它们可以分为两个完全相同的部分。
设计意图:有趣的“猜一猜”游戏,不但激发了学生的好奇,而且让学生初步感受到:有些物体可以分为两个完全相同的部分,同时也为学生感知轴对称图形的特征作了铺垫。
二、观察、操作——探究特征。
1、观察,初步感知。
(多媒体出示天安门、飞机、奖杯,让学生自由说一说)。
师:(小结)是的,这些物体都是对称的。
师:在生活中你还见过那些物体也具有对称的特征吗?
(自由说,全班交流)。
2、操作,体会特征。
师:如果把上面的物体画下来,我们可以得到下面的图形。
(多媒体出示按天安门、飞机、奖杯的实物画下来的图形)。
(选三人在实物投影上交流)。
师:这三个图形有什么共同的特征吗?(指名说)。
小结:是啊,它们对折后,折痕两边的部分完全重合。像这样的图形,我们叫它轴对称图形!你能跟同桌说说什么是轴对称图形吗?(学生自由说后,多媒体出示轴对称图形的概念,齐读)。
3、识别,加深体验。
(请小组长拿出预先准备好的图形,组织大家讨论,不确定的可以动手折一折,然后全班交流。)。
(指名一组在实物投影上交流)。
小结:要使对折后折痕两边的部分完全重合,等腰三角形、等腰梯形只有一种对折的方法。长方形有两种对折的方法,正方形有4种对折的方法,这个特殊的五边形有五种对折的方法,而圆有无数种对折的方法呢!不管是一种还是很多种对折方法,只要对折后折痕两边的部分能够完全重合,这图形就是轴对称图形。
设计意图:在认识轴对称图形的特征时,教者安排了三个层次的教学环节:第一层次,让学生在丰富的实例中进行感知,第二层次让学生在充分的操作中感知,第三层次放手让学生进行独立的选择和判断。层层深入,有利于学生更好地认识轴对称图形。
4、训练,巩固特征。
(1)完成想想做做,实物投影出示图形。
师:这是我们生活中常看到的一些图形,你能判断出它们中哪些是轴对称图形吗?
(先独立判断,如果你认为是轴对称图形的,在下面打勾,并且用尺子画出一条虚线来表示你准备怎样对折,全部完成了,由小组长组织大家讨论,全班交流)。
(2)完成想想做做,实物投影出示图形。
(先独立判断,如果你认为是轴对称图形的,在下面打勾,如果不确定,可以拿出相应的字母折一折,完成了跟同桌交流,全班交流)。
(3)完成想想做做,实物投影出示图形。
(先独立判断,如果你认为是轴对称图形的,在下面打勾,完成了小组长组织大家讨论,全班交流)。
(4)完成想想做做,实物投影出示图形。
师:我们认识了那么多的轴对称图形,你能自己画出一个轴对称图形吗?
请小朋友画出下面每一个图形的另一半,使它成为一个轴对称图形!画的时候要动脑筋想一想,怎样画又快又好!
(独立练习,全班交流)。
三、做一做——内化新知。
师:刚才我们看了、找了、画了轴对称图形,现在,让我们来做一个轴对称图形好吗?你可以用老师提供给你们的工具做,也可以自己想法做,比一比,哪一组的方法多,做出的图形美!
(小组活动,完成后,请一组到实物投影上展示,相机点评)。
设计意图:放手让学生自己“做”轴对称图形,让学生展示自己的“作品”,不但可以让学生共享彼此的经验,而且可以使学生进一步积累感性认识,丰富学生对轴对称图形的体验。
四、看一看——拓展延伸。
师:轴对称图形以其特有的对称美,给人们带来了一种和谐的美感,蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由的飞翔;我们的服装因为对称显得大方、典雅;古今中外,有许多著名的建筑也是对称的,让我们来看一看这些对称的建筑,感受它们的奇妙和美丽!
(多媒体播放)。
师:生活中的对称现象还有很多很多,如果有兴趣,电脑课时,可以上网查阅。
设计意图:数学因为其与生活的密切的联系,才能体现其生活的价值。让学生了解自然界、生活中的对称现象,可以进一步拓宽学生的知识视野,帮助学生体会“对称”的科学与美学价值!
五、说一说——总结评价。
师:今天,我们学习了轴对称图形,你有什么收获吗?
六、作业。
1、完成想想做做4、6。
2、收集一些轴对称图形的图片,最好是同一系列的,如:都是建筑的,或者都是交通标志的,在同学之间交流。
人教版数学轴对称图形教案篇二
同学们,你知道世界上有哪些著名的建筑物吗?老师这里也收集了一些著名建筑物的照片,咱们来欣赏一下,好吗?(播放照片)。
你觉得这些建筑物怎么样?
这些建筑物之所以看起来这样赏心悦目,是因为它们都具有一种对称美。
2、欣赏生活中其他具有对称性的物体。
除了有些建筑具有对称的特点,生活中还有很多物体也是对称的。你能来说一说吗?
是啊,对称的物体的确很多。大家看,边解说:许多动物的外形是对称的。有些艺术品是对称的。飞机的外形也是对称的,如果飞机不对称的话,会怎么样?看来对称不仅能给我们带来美的感受,有时也是必须的。
现在把这些对称的物体画下来,可以得到一些平面图形,(出示图形)这些图形有什么特点呢,让我们一起来研究一下。咱们来比比看,哪个小组的同学最会研究!现在就请轻轻打开1号信封取出图形,开始!(学生活动)。
交流:研究之后,你们发现了什么?
指名4个学生回答一下,学生回答的时候教师指导他举起图形展示,同时将他研究的图形贴到黑板上。
把没有讨论的图形贴上黑板,
那其余的图形是不是也具有这样的特点呢?
是啊,我们发现这些图形都能对折,(板书:对折)(课件演示)。
对折后折痕两边的部分大小一样、形状一样,(课件演示)能够完全重合。(板书;完全重合)。
中间的折痕呢,就像一条轴,这种对折后两边能完全重合的图形就是轴对称图形。(完成板书)。
2、试一试。
下面我们来看一看2号信封里的这些图形(出示信封)哪些是轴对称图形?
请一个小组的同学一起讨论一下。
学生讨论,教师收掉黑板上的六个图形。
交流:
(三角形:这种三角形是轴对称图形。梯形:这种梯形是轴对称图形。
长方形:还有谁和他折得不一样?
长方形除了竖着折两边能完全重合,横着折也可以。(教师演示)。
正方形:正方形也有几种折法可以使两边完全重合。
那有没有不是轴对称图形的呢?你怎么会认为它不是呢?
同学们,我们已经认识了什么是轴对称图形,那你想不想自己动手来制作一个呢?在动手之前,我们先来开个小小讨论会,每个小组讨论这三个问题:
(1)做什么图形?
(2)选什么工具?
(3)怎么分工?
好,开始!
学生讨论。
你们讨论出一个方案了吗?
那就请大家各显神通吧,我们来比一比哪个小组的作品最有创意。
教师巡视,要是他们时间够的话可以请他们多做一个。要是发现做两个的,请他们展示做的好的那个。
交流:你们做的是什么图形?是怎么做的?
1、今天我们认识了什么图形?在我们的生活中到处都可以找到它。
现在就请同学们在纸上的这些图形中找出哪些是轴对称图形。
紫荆花:它为什么不是呢?教师拿教鞭在屏幕上一指,因为它里面的图案对折后两边不能完全重合。
c:为什么是呢?/谁有不同意见。这就说明并不一定要左右对称才行,换个方向对折也可以,一次折不出,就多试几次。
2、画一画。
请同学们看第二张纸,
图上都只画出了每个图形的一半,你能画出它们的另一半,使它成为一个轴对称图形吗?
我们先来画第一个。
请你说说你是怎么画的?还有其他画法吗?
第二种画法更容易。
先观察给出的一半图形,确定另一半图形的各个顶点,再连点成线比较容易。
再来画一下第二个。
请一个学生来展示一下。
你和他一样吗?
好,现在我们来轻松一下,请同学们看这,教师表演剪纸。谁来说说我刚刚剪纸时运用了什么知识?课后请同学们到生活中去寻找一下,看看哪些地方也用到了轴对称图形的知识。
你还能想到轴对称图形在生活中的作用吗?
机动:连一连。
你是怎么判断的?
人教版数学轴对称图形教案篇三
人教版小学数学二年级下册第29页例1及相关内容。
1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
多媒体课件、实物图片等。
1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出“对称”
1、观察几幅对称图形,引导学生感悟对称。
2、说一说生活中的对称现象。
1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。
(3)交流展示学生的作品。
(1)看一看,摸一摸,说一说。
(2)画一画:师示范画出对称轴,然后学生自己画,再交流。
(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
通过这节课的学习,你有什么收获?
人教版数学轴对称图形教案篇四
1、初步感知轴对称图形并理解轴对称图形的含义。
2、能准确地判断出哪些是轴对称图形,并能找出轴对称图形的对称轴。
3、通过观察、思考和动手操作培养学生的抽象思维和空间想象能力。
4、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重难点。
轴对称图形和对称轴的概念。
画出轴对称图形的对称轴的方法。
教学过程。
(一)、欣赏图片,建立表象。
1、师:今天老师给大家带来了礼物,猜猜是什么?出示蝴蝶的一半。
生:蝴蝶。
师:你是怎么猜到的呢?你怎么知道是蝴蝶的呢?
生说一说,师加以引导。
师:生活中,像蝴蝶这种两边大小、形状、图案一模一样的图形叫轴对称图形。
2、你在生活中见过轴对称图形吗?说一说吧。
生举例子,师加以引导并表扬肯定。
(二)、小组合作,探究新知。
1、出示小青蛙图片。
小组动手操作。
2、交流汇报。
用对折的办法,发现两边完全重合。
中间的折痕就是对称轴。
3、剪一剪——认识轴对称图形。
在剪之前先想一想怎样剪才能剪出对称的图形,然后动手试一试。
学生小组合作,完成剪一剪。
组织学生将自己小组剪出的对称图形进行展示并汇报各自的剪法。
(2)引导学生明确剪对称图形的方法。
要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。
教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。
教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。
学生操作,判断。指名上台演示,说说判断的理由。(展示时,教师注意让学生从不同的方向,横着、竖着、斜着的方向对折,感受不同角度进行判断。)。
4、引导学生认识对称图形的对称轴。
谈话:将对折的图形打开,你有什么发现?(中间有一条折痕。)。
师:这条折痕就是这个轴对称图形的对称轴。
同学们,用铅笔画出你们所剪图形的对称轴。
学生认识对称轴,画出对称轴。
(三)、拓展延伸,巩固深化。
1、判断哪些图形是轴对称图形,说明理由。
引导学生在头脑中将图形对折,看看是否完全重合。
生活中还有很多图形是轴对称图形,老师收集了一些图形,你想看看吗?
(四)、课堂小结。
师:通过今天的学习,同学们有哪些收获?
学生自由发言。
教师小结:这节课我们从生活中的对称现象认识了轴对称图形,只要我们留心观察,我们生活的周围处处可以看见轴对称图形,正是因为有了这些图形,我们的生活才会装扮得这么美丽。
板书。
两边一模一样对称轴。
人教版数学轴对称图形教案篇五
1、知识与能力。
(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2、过程与方法。
通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3、情感、态度与价值观。
通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
创设情境-主体探究-合作交流-应用提高。
多媒体课件、直尺、剪刀和彩纸等。
我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物、
问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片)。
(1)这些图形有什么共同的特征?
(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?
(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?
师生互动操作设计:
教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等。
1、经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念。
归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴。
2、出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?
学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合。
在学生交流的基础上,引导学生对轴对称的概念进行归纳。
把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:
轴对称是说两个图形的位置关系。而轴对称图形是说一个具有特殊形状的图形。
轴对称的'两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形。
对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段。
2、鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”
3、进而引导学生进行归纳:
轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”。
类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”。
1、出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等。
对称轴是任何一对对应点所连线段的垂直平分线。为下一课学习垂直平分线的画法打下基础。
2、利用以前认识过的一些简单的几何图形,如三角形,正方形,矩形,平行四边形,梯形等,以这些图形的任意一条边所在直线做为对称轴,找出对称点,自己设计和创作轴对图形或是成轴对称的两个图,并将学生的成果展示在黑板上。
1、这节课你学到了什么?
(3)线段垂直平分线的概念;
(4)轴对称的性质。
2、你还学到了什么?还想学习什么?
作业:收集和整理生活中有关轴对称的图片,课余时间进行交流,发现生活中对称的美。
(1)沿直线对折。
(2)两侧能够完全重合。
3、垂直平分线。
(1)过线段中点。
(2)垂直于这条线段。
对称轴是任何一对对应点所连线段的垂直平分线。
人教版数学轴对称图形教案篇六
1、通过观察和操作认识轴对称图形和轴对称的含义。
2、会画出轴对称图形的对称轴。
3、使学生在操作中加深对图形的认识,建立空间观念。
认识轴对称图形,画对对称图。
认识图形,建立空间观念。
一、铺垫孕伏
1、口算
二、探究新知
1、投影出示
树叶图、青蜓图、天平图,任意不对称图形。
2、引导学生分组讨论
(1)这些图形,形状有什么特点?
(2)再找出一些生活中实例图形。
3、通过汇报,在教师指导下,使学生明确到:
树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。
4、(课件演示:对称图形下载)
将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。
5、同桌同学合作实验
6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。
7、投影出示,做一做和练习二十六1题,引导学生判断。
(1)教师出示投影。
(2)学生讨论、交流。
8、分组实验,组内每人画一种图形。
(1)出示101页上图。
(2)每人在方格纸上画一种图形,并剪下来。
(3)比较,哪些图形是轴对称图形,画出它们的对称轴。
(4)教师指导。
(5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。
(6)启发学生,每一种图形,可以画几条对称轴。
学生分组讨论交流。
汇报:正方形可以画4条对称轴。
长方形可以画2条对称轴。
等腰三角形、等腰梯形各有一条对称轴。
圆有无数条对称轴。
(7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。
三、课堂练习
1、下面的数字,哪些是轴对称图形?它们各有几条对称轴?
2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?
引导学生同桌或组内操作。
引导学生在书上填画。
四、课后作业
运用学过的知识,用纸剪去一个对称图形,可以怎样剪?
五、板书设计
轴对称图形
轴对称图形
人教版数学轴对称图形教案篇七
一、基础知识回顾。
1、下列图形不一定是轴对称图形的是()。
a、圆。
b、长方形。
c、线段。
d、三角形。
2、以下结论正确的是()。
a、两个全等的图形一定成轴对称。
3、轴对称图形对应点连线被,对应角对应线段都。
4、设a、b两点关于直线mn成轴对称,则垂直平分。
5、三角形的周长等于,三角形的内角和是。
二、新知识产生过程。
问题1:等腰三角形有哪些性质?请阅读课本p121。
8、等腰三角形是轴对称图形吗?如果是,请在图(2)中画出它的对称轴。
你是如何找到等腰三角形的对称轴的?。
等腰三角形的对称轴是什么?。
a、顶角的平分线所在的直线。
b、底角的平分线所在的直线。
c、底边上的高所在的直线。
d、底边上的中线所在的直线。
人教版数学轴对称图形教案篇八
“轴对称图形”教学设计芙蓉中心小学钱晓红教学内容苏教版小学数学第十一册“轴对称图形”。教学目标1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。教学准备教师:多媒体教学课件等。学生:白纸、彩纸、剪刀、颜料、钉子板等学习材料一份。教学过程一、故事导入,激发兴趣。(使学生初步感知对称,揭题)老师先给大家讲个故事。花丛中,一只美丽的蝴蝶正在津津有味地吃着花蜜,忽然飞来一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我来找你玩的。”蝴蝶更生气了:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”蜻蜓落在旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶和我们也是一家呢。”听了这个故事,你想提出什么问题呢?(蜻蜓、蝴蝶和有些树叶为什么是一家?它们有什么共同的特征?)(课件出示三个图形)仔细观察这三个物体的图形,有谁知道它们为什么是一家?(你能发现什么?)其实在我们的生活中,有很多对称现象,今天我们就一起来学习对称知识中的“轴对称图形”。(揭题)二、认识对称,体悟特征1.游戏。下面我们一起来玩个游戏。师边说边演示:拿一张纸,把它对折,然后从折痕的地方,撕下一块,或者用剪刀剪下一块。(师剪)会玩吗?大家玩一玩。学生撕纸或剪纸。在黑板上展示学生的作品。(结合学生的撕纸或剪纸作品,引导学生进行观察、比较、概括,抽象出这类平面图形的特点。)师:如果我们把这些纸看作一个个图形的话,你们有没有发现它们共同的地方?(让学生各抒己见)根据学生回答的情况,板书:沿着一条直线对折左右两侧完全重合根据刚才同学们发表的意见,谁能抓住要点,概括的来说一说怎样的图形是轴对称图形?多媒体演示对折的过程。(出示概念,齐读)师:轴对称图形可以沿着一条直线对折,两侧图形完全重合,这条折痕所在的直线有一个专门名词,叫对称轴。(课件演示)对称轴一般用点画线表示,教师在黑板上演示。这就是对称轴,你们能在自己刚才的作品上也画上一条对称轴吗?学生动手画。2.说一说你在日常生活中见过哪些轴对称图形?3.练一练/1,练习二十七/14.出示:结合轴对称图形的特征,判断下列图形哪些是轴对称图形?师:同学们判断得对不对呢?想一想有什么办法可以证明每个图形到底是不是轴对称图形?(到底哪位同学说的'对呢?想一想有什么办法可以证明每个图形到底是不是轴对称图形?)出示:实践活动:(1)以小组为单位,拿出信封中的平面图形,通过折一折,验证每个图形是不是轴对称图形?(2)如果是轴对称图形,请画出它的对称轴,能画几条就画几条。学生小组合作进行操作。全班交流:哪些是轴对称图形?它们各有几条对称轴?(边多媒体演示边板书表格)5.练一练/3三、总结升华这节课我们认识了轴对称图形,能把你的收获交流一下吗?四、深化练习:1.在0、2、3、4、b、d、e、f中,轴对称图形是2.想象:根据给出的轴对称图形的左半边,想象它的另一半,并判断给出的是什么图形。五、欣赏对称,提升认识(由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的美妙与神奇,并进一步拓宽学生的视野,受到美的洗礼。)师:对称是一种美,它能使物体具有平衡、匀称、圆满的感觉,人们利用事物的对称美,创造了许多美丽的物体和壮观的奇迹,请看――学生欣赏电脑出示的人类创造的东方明珠电视塔、天安门、埃菲尔铁塔、宫殿、隐形飞机、赵洲桥……图。六、创作对称,深化体验师:既然轴对称图形是如此美丽,我们何不用它们来装扮我们的教室呢?想一想,你打算设计怎样的图形来美化教室呢?学生思考,并在班上说一说。(每小组一个材料袋。)请拿出你们的材料袋,根据你们刚才的设想来完成你们的创作,共同来把我们的教室装扮得更加美丽。学生操作,做完后用透明胶贴在教室里。(放音乐)。
人教版数学轴对称图形教案篇九
教学内容:
教材第3~4页例1和例2。
教学目标:
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:
教学准备:
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流你们还见过哪些轴对称图形?
(3)轴对称图形的概念:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
例题1:同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
例题2:。
(1)引导学生思考:a、怎样画?先画什么?再画什么?b、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一第1、2题。
2、课外作业:
板书设计:轴对称如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
人教版数学轴对称图形教案篇十
1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。
2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。
3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。
教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。
一、创设情境,感受对称。
1、认识生活中的对称现象。眼镜导入新课。
师:看,老师还给大家带来了几张美丽的图片。
生:蜻蜓、树叶、蝴蝶、脸谱的图片。
师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?
生1:它们的两边一样的。
生2:它们是对称的。
师:你是怎样理解对称的?
生2:它们的两边是一样的。
师:这些图形真像你们说的那样,左右两边完全一样吗?
生:是。
师:谁能想个办法来验证这些图形左右两边完全一样呢?
生:对折。
生:上台演示折蝴蝶图形。
生齐:好。
师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的两边是一样的吗?开始吧。
生:动手操作。
师:谁来说说你验证的结果?
生1:我折的是脸谱图形,对折后它的两边是一样的。
生2:我折的是蜻蜓图形,它对折后,两边是一样的。
生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。
生4:我折的是树叶图形,对折后,它的两边也是完全一样的。
师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。
师:老师这里还有一个图形,是什么?
生:桃子图形。
师:想折吗?
生齐:想。
生1:我发现了桃子图形一边大,一边小。
生2:它没有重合。
师:一点都没有吗?
生齐:有一点。
师:蝴蝶图形呢?
生齐:全部重合了。
师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。
师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)。
教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)。
2、认识对称轴。
师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)。
生:有一条线。
师:这一条线就是我们刚才折的折痕。
师:这条折痕是怎么形成的?有什么特别的地方?
生1:是对称图形对折后形成的。
生2:折痕的两边是完全一样的。
师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)。
师:我们通常用虚线来表示对称轴。(板书:画对称轴)。
师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。(板书:轴)。
三、应用拓展、巩固新知。
师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:p68的做一做)。
2、猜一猜。
3、找对称轴。
师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!
(课件依次出示:长方形、正方形、圆形)。
师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)。
四、师生共结。
师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。
人教版数学轴对称图形教案篇十一
教学内容:轴对称图形、对称轴、对称性质;课本第100~101页,完成相应的“做一做”题目和练习二十六的第1~7题。
教学目的:使学生初步认识轴对称图形与对称轴;会找出对称图形的对称轴;并知道对称轴两侧相对的点到对称轴的距离相等。
教具、学具:剪刀、复写纸、白纸。
教学过程:
一、复习。
说一说你是如何用对折的方法找出一个圆的圆心的。
二、新授。
1、导入。
在日常生活中,我们会看到一些物体或图形很特别,把它们像圆一样沿着一条线对折,两边就完全重合;如枫树叶、蝴蝶(出示图形)等这些图有对称美;那么,到底什么样的图形才是轴对称图形,这就是我们今天要学的内容。
教师把一张白纸对折,中间夹上双面复写纸,在纸上面画半个花瓶,然后把纸展开,得到以折痕为对称轴的整个花瓶。
从图中不难发现折痕两侧物体形状与图形的大小完全一样。
师生一起打开课本第121页,看上半页的三个图(树叶、蜻蜓、天平)由学生说一说他们的特点。(他们以树叶的主干、蜻蜓的身躯、天平的指针为轴左右两侧形状、大小一样。)。
做课本上的实验,把一张纸对折并按书中的图样画好,再用剪刀剪下,把纸打开可看到它是以树干这直线为轴,两侧的图形能够完全重合。
小结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形(指着树叶等)就是轴对称图形。折痕所在的这条直线叫做对称轴。
回答课本第121页下面的“做一做”。
3、画(找对称轴)。
学生画出对称轴。
最后要求学生在课本上量一量对称轴两侧相对的点到对称轴的距离是否相等。通过多处的测量可概括出:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。
人教版数学轴对称图形教案篇十二
1.通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2.使学生能在实物图案或简单平面图形中识别出轴对称图形,能用合理的方法做出轴对称图形,进一步丰富对图形的认识,发展初步的形象思维和空间观念。
3.使学生在积极参与数学学习活动的过程中,对数学产生好奇心、求知欲,感受轴对称图形的对称美,激发对数学学习的积极情感。
拿出一张彩纸,对折后描出爱心图一半。
预设:
(1)左右两边是一样的;
(2)左右两边是对称的。
小结:像这样的图形,两边是对称的。有趣吗?今天我们就来学习像这样的图形。(板书:对称)。
二、操作实践,探索新知。
谈话:同学们想不想像老师这样也剪一个漂亮的爱心呢?请大家拿出剪刀和彩纸,跟老师一起剪一个这样的图形。
边讲解边演示,师生共同剪出一个爱心。
谈话:请大家继续看下面的几个图形。(课件出示天安门、奖杯、飞机等图片,见教科书附页)。
提问:认识这些图形吗?这些图形有什么特点呢?(学生自由回答)。
谈话:请同学们拿出自己从附页中剪下来的这几个图形,折一折、比一比,看看你能发现什么。
学生操作,同桌互相说一说。
反馈:谁愿意把你的发现说给全班同学听?
预设:
(1)这些图形对折后,两边都是一样的;
(2)它们是对称的。
再问:对折后,哪两边完全重合了?(引导学生体会折痕的两边能够完全重合)。
谈话:请同学们拿出另外两个图形,先折一折,看两边是不是也能完全重合;再指一指折痕,并和同桌说一说,每一个图形的哪两边完全重合。
指出:对折后两边能完全重合的图形,叫做轴对称图形。(板书:轴对称图形)这条折痕所在的直线,就是轴对称图形的对称轴。(板书:对称轴)。
提问:你能用自己的语言说一说轴对称图形有什么特征吗?
预设:
(1)把一个图形对折后,如果两边一样,这个图形就是轴对称图形。
(2)把一个图形对折后,如果两边完全重合,这个图形就是轴对称图形。
追问:对折后,图形的两边怎样才叫完全重合?
预设:
(1)两边完全重叠在一起;
(2)两边的大小完全一样,形状也完全相同。
出示:等腰三角形、等腰梯形、正方形、正五边形、平行四边形、圆,并按顺序给图形编号。
启发:这些平面图形中,哪些是轴对称图形?哪些不是轴对称图形?(稍停)别忙着发言,先想一想,轴对称图形有什么特点?要知道一个图形是不是轴对称图形,可以怎样做?(可以把这个图形对折,看折痕的两边能不能完全重合)。
谈话:请同学们从第一个信封中拿出这几个图形,先动手折一折,再和小组里的同学说一说,这些图形中,哪些图形是轴对称图形。
学生操作,教师巡视,并对个别学生进行必要的指导。
反馈:通过对折,你知道哪些图形是轴对称图形?(1号、2号、3号、4号、6号是轴对称图形)。
指正方形,提问:这个正方形,为什么是轴对称图形?能演示一下吗?
追问:还有不同的折法吗?
学生演示各种不同的折法。
正方形不仅上下对折两边完全重合,左右对折或沿对角线对折,折痕的.两边也能完全重合。不论怎样对折,只要折痕的两边完全重合,我们就说这个图形是轴对称图形。
指平行四边形,提问:这个平行四边形,为什么不是轴对称图形?
如果学生中有不同意见,则请判断正确的同学想办法说服不同意见的同学。
(1)出示想想做做第1题。
谈话:你能判断下面的图形哪些是轴对称图形吗?
每一个图形,都让学生说一说自己是怎样想的,可以怎样对折,对称轴在哪里,再通过课件演示对折的过程,验证学生的判断。
(2)出示拼音字母:woaichangshu。
谈话:这些拼音字母哪些可以看作是轴对称图形?
学生逐一判断,并说明理由。
提问:你知道这些拼音字母的意思吗?
全班齐读:我爱常熟。
谈话:今天我们研究了这么多轴对称图形,你们想不想自己动手做一个漂亮的轴对称图形?(想)请同学们拿出第二个信封中的材料,自己想办法做出一个轴对称图形来。
学生操作,教师巡视,并让学生把自己的作品展示在黑板上。
交流:黑板上都是同学们用剪纸的方法制作的轴对称图形,漂亮吗?
小结:同学们真聪明,做出了这么多美丽的轴对称图形,老师向你们表示祝贺。
电脑出示:五角星、大众汽车标志、工商银行标志、汉字中等图案的一半,学生回答后,展示整个轴对称图形。
提问:同学们,今天我们一起学习了轴对称图形,你有哪些收获?
着重引导学生说说轴对称图形的主要特征,以及判断一个图形是否是轴对称图形的方法。
谈话:轴对称图形给人一种对称、和谐的美感。其实,在我们的生活中就有许多美丽的对称现象,请欣赏。(课件播放:生活中的对称)。
谈话:大家感觉美吗?如果把它们画下来就形成了我们今天学习的轴对称图形。希望同学们运用今天所学的知识,在生活中发现美,创造美。
人教版数学轴对称图形教案篇十三
教学目标:1、使学生进一步掌握相关图形的特征及运算。
2、使学生的空间观念和想象能力得到培养。
教学重点:公式及计算。
教学难点:技能技巧。
教具准备:小黑板幻灯机。
教学过程()。
一、基本训练:
1、口算:
在听算本上听算《口算卡片》(38)。
(1)统计3分钟以内做完的同学加以表扬,然后指名报答案。
(2)全班统一核对,老师选重点点拨,集体订正。
2、口答:
指名回答上一节课所学知识。解答百分数应用题应该注意什么?
二、进行新课:
1、复习圆的概念。设计如下问题:
(1)圆的圆心是如何确定的?
(2)什么是半径、直径,同一个圆的半径和直径有什么关系?
(3)不同的圆有不同的圆周率吗?
(4)什么是圆的周长?什么是圆的面积?
2、复习圆的周长和面积的计算:
(1)做143页的第11题。
(2)集体讲评,让学生说一说圆周长的.计算公式及面积的计算公式。
(3)教师和学生一起回忆公式推导过程。
(4)在小黑板上出示如下问题:让学生口答。
a、填空:圆周长是其直径的()倍。
大圆的半径是小圆的3倍,大圆的圆周长是小圆的()倍。
b、判断:圆周率等于3。14()。
圆的面积大小只与半径的长短有关。()。
集体讲评。
3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。
三、巩固练习:
1、做练习三十五的第23题:
(1)全班座练,指名板演。教师巡视,指导补偿生。
(2)统一讲评,集体订正。重点讲清:图形的特点。
2、做练习三十五的第24题:
(1)全班座练,指名板演。教师巡视,指导补偿生。
(2)统一讲评,集体订正。重点讲清:运用的公式。
四、当堂检测:(当堂效果验收,是课堂作业)。
在a本上做练习三十五的第30题。
五、当天检测:(当天效果验收,是家庭作业)。
在b本上做练习三十九的第28、29题。
教后感:
人教版数学轴对称图形教案篇十四
1、通过观察和操作认识轴对称图形和轴对称的含义。
3、使学生在操作中加深对图形的认识,建立空间观念。
教学重点。
教学难点。
认识图形,建立空间观念。
教学过程。
一、铺垫孕伏。
1、口算。
二、探究新知。
1、投影出示。
树叶图、青蜓图、天平图,任意不对称图形。
2、引导学生分组讨论。
(1)这些图形,形状有什么特点?
(2)再找出一些生活中实例图形。
3、通过汇报,在教师指导下,使学生明确到:
树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。
4、(课件演示:对称图形下载)。
将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。
5、同桌同学合作实验。
6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。
7、投影出示,做一做和练习二十六1题,引导学生判断。
(1)教师出示投影。
(2)学生讨论、交流。
8、分组实验,组内每人画一种图形。
(1)出示101页上图。
(2)每人在方格纸上画一种图形,并剪下来。
(3)比较,哪些图形是轴对称图形,画出它们的对称轴。
(4)教师指导。
(5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。
(6)启发学生,每一种图形,可以画几条对称轴。
学生分组讨论交流。
汇报:正方形可以画4条对称轴。
长方形可以画2条对称轴。
等腰三角形、等腰梯形各有一条对称轴。
圆有无数条对称轴。
(7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。
三、课堂练习。
2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?
引导学生同桌或组内操作。
引导学生在书上填画。
四、课后作业。
运用学过的知识,用纸剪去一个对称图形,可以怎样剪?
人教版数学轴对称图形教案篇十五
2、让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。
3、让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意。
识和实践能力。
1、了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
课件剪刀彩色卡纸平行四边形纸。
1、谈话:看到同学们一张张可爱的笑脸,老师非常开心。
课件出示不对称“脸图”问:“这张脸可爱吗?”
生:不可爱!
课件演示脸图由不对称变为对称,问:现在呢?
生:可爱!
师:看来,人人都喜欢美丽的东西。今天老师给大家带来了一些美丽的图片,请欣赏。
2、图片欣赏(课件出示对称图形图片)。
看完图片后师问:这些图片中的图形有什么特点?(指名回答)。
学生可能会说,它们两边完全一样。
教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)。
师:在我们的生活中,还有很多事物都是对称的。
看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?
生:想!
师:老师和你们来一场比赛,看谁剪的又快又好,开始!
师生同时动手剪,完成后教师把自己剪的贴在黑板上。
请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。
问演示学生:你怎么让大家知道你剪的小松树是对称的呢?
生:我把它对折(生边说边演示)。
师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?
生:左右两边完全重合(师板书:完全重合)。
图形)。
生齐读概念。
2、认识对称轴。
师:把你们的对称图形打开,观察图形中间有什么?
生:有一条直直的折痕。
师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)。
出示感念,生齐读。
师演示并带领学生画对称轴(强调用虚线)。
我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!
1、看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)。
生应用所学知识判断,教师点评。
生动手画对称轴,师巡视指导,完成后订正。
2、找出下列图形中的轴对称图形(课件出示课本14页第1题)。
生找出轴对称图形,并说说每个图形的对称轴在哪儿。
师:聪明的同学们能找轴对称图形,聪明的你们会画轴对称图形吗?
3、出示课本14页第3题。
师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。
生在剩下的两个图形中选择一个动手画,完成后展示成果,全班点评。师:同学们既能找,也能画,那肯定也能判断了。请看(课件出示)。
4、下面哪些图形中的红线是对称轴?
师:看来同学们已经知道了很多轴对称图形,
(出示导课时的“脸图”可爱。
的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?
生找身边的轴对称事物。
我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学。
们谈谈通过这节课的学学习,你有什么收获?
生:畅谈收获。
师:你们想知道老师有什么收获吗?(想)。
老师今天收获了一份愉快的心情!
板书设计:
完全。
人教版数学轴对称图形教案篇十六
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
多媒体课件、书p114页的平面图形。
一、复习导入。
出示飞机图、蝴蝶图、奖杯图。提问:这三幅图有什么共同的特征?(都是轴对称图形)。
指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)。
把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点划线画出对称轴,并板书:对称轴)。
思考:怎样判断一个图形是不是轴对称图形?
谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)。
二、教学例题。
1、师:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2、指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?
对他的发言有没有不同的意见?
谁还有不同的折法吗?也来展示一下。(指名展示)。
提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3、师:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
追问:对角线折出来的是轴对称图形么?为什么?他们不是一样的'吗?
4、出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
指名到黑板上量长方形的边,取中点。
学生说怎样画对称轴,教师画,画成如右形状(图略),并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
三、教学“练一练”
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。
让学生独立画对称轴。
交流:各画出了几条对称轴?你是怎样想的?
先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?
再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学例5。
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出四个对应的顶点再连线)。
五、课堂总结。
六、课堂作业。
1、课堂作业:《补充习题》第3页。
2、家庭作业:《伴你学》第3页。
板书设计:
任意三角形否0。
等腰三角形是1。
等边三角形是3。
等腰梯形是1。
平行四边形否0。
长方形是2。
正方形是4。
圆是无数条。
人教版数学轴对称图形教案篇十七
步体会到生活中的对称现象,初步认识轴对称图形的一些基本特征。并初步知道对称轴。
2.使学生能根据对轴对称图形的初步认识,在一组实物图案或简单平面图形中正确识别轴对称图形;能用一些方法“做”出一些简单的轴对称图形。
3.使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
多媒体课件、剪刀、彩色笔两支、彩色纸。
3.生活中哪些物体也具有对称的性质,请你写在横线上。
4.剪下书本第115页的天安门城楼图、飞机图和奖杯图,并对折,把你的发现写下来。
5.搜集一些轴对称的图形,打印出来,并能作简单的说明。
6.搜集一些著名建筑的图片,打印出来。
1.今天老师带来了几个物体,我们一起来看看!(出示:天安门、飞机、奖杯)。
问:请同学们仔细观察,这些物体的外形都有什么特点?(对折后两边相同、对称、都是轴对称图形)。
预设1:左右两边相同。像这样两边大小、形状完全相同的物体,我们可以说是对称的。那怎么来验证呢?(对折)。
预设2:轴对称图形(对称)。那你说说你对轴对称图形(对称)的了解?
是不是所有的图形都是对称的?它们又是怎么对称的?我们又怎么来证明?今天这节课,我们就一起来研究一下。
3.你怎么理解轴对称图形?(学生的回答可能很零碎)。
好,那接下来我们就一起来验证一下!
1.课前让大家剪下了这三个图形并对折了,现在能把你的发现和大。
家说一说吗?
生交流。(两边是一样的、左右两边大小一样、对称、有一条线、折横、对称线等)。
(1)两边的大小一样、对称、完全重合。
问:你是怎么折的?比如说这个天安门图(左右对折)飞机图?(上下对折)。
有没有不同的折法?那我可不可以这么折?为什么?(不能完全重合、两边不一样大小)也就是说,轴对称图形对折后两边要——完全重合。
(2)对折后是以前的一半。问:为什么只能看到一半?(两边都重合了)。
(3)它们都是轴对称图形。那你是怎么判断的?都是这么折的吗?有没有不同的折。
法?我这样折可以吗?为什么?
(4)折横、有一条线。若学生说不到,师可这样引导:我们再来看这几个图形,对折后都留下了什么?(一条线——这条线我们叫折痕)那这条折痕所在的直线我们叫——对称轴。对称轴用点划线来表示。画时,先画线,再画点,点和线间隔画。我们可以竖着画,也可以横着画。(黑板上演示)。
那你能尝试找出其中一个图形的对称轴并用彩色水笔画一画吗?开始。
生在对折的纸上找一找并画一画。
反馈。画得正确吗?下面画对的同学请举手!真棒!
下面,老师要看看我们同学有没有掌握了。出示图——汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽章图。(想2)。
你能判断出下面哪些是轴对称图形吗?
这个呢?
重点讲解:香港区徽章图。外面完全重合了,里面的图案没有完全重合,所以——不是轴对称图形。
2.教学试一试。
轴对称图形其实对我们来说并不陌生,在我们学过的平面图形中也有一些。
出示:你能判断哪几个图形是轴对称图形吗?
交流反馈:哪些是轴对称图形?为什么?(对折后能完全重合)怎么对折的?(上下、左右)有几种折法?(2种)。
正方形、长方形:怎么对折的?还有别的折法吗?(还能怎么折?)师:不管怎么折,只要对折一次后图形能完全重合的,都是轴对称图形。
正五边形是吗?为什么?
着重提出:平行四边形为什么不是?
生拿出平行四边形折一折,小组讨论后,指名说理由。
问:你的想法是怎样的?谁愿意来折一折?