数学思想心得体会(通用10篇)
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。
数学思想心得体会篇一
一、引言(200字)
数学作为一门科学,不仅仅是解题的工具,更是人类思维的一种方式。对于我来说,数学思想的体会已经伴随着我多年,它让我发现了生活中不同的规律和模式,培养了我的逻辑思考能力。在学习数学的过程中,我体会到数学思想的神奇和美妙之处。
二、数学思维的培养(200字)
数学思维不仅是解决数学问题的能力,更是一种思考问题的方式。通过解决各种数学问题,我收获了很多。首先,数学思维注重逻辑和推理,要求我们以准确的步骤推导解题过程,并做出正确的结论。这不仅培养了我的严谨性,还增强了我的逻辑思考能力。其次,数学思维强调抽象能力,要求我们将具体问题转化为抽象的数学模型。这使我在解决现实生活中的问题时,能够更加具备归纳总结的能力。最后,数学思维注重创造性思维,鼓励我们寻找解决问题的不同思路和方法。这让我学会了放眼全局,拓宽思维的边界。
三、数学思想在生活中的应用(200字)
数学思想不仅仅停留在课本中,它也渗透到了我们生活的方方面面。例如,在购物时,我们需要计算价格折扣和找零;在旅行时,我们需要计算行程和时间;在做饭时,我们需要计算配料比例和烹饪时间。数学思想使我们能够更好地处理日常生活中的各种数学问题,并且能够帮助我们做出更明智的决策。另外,数学思想也广泛应用于科学领域,如物理学、经济学和工程学等。它们的发展离不开数学的思想和方法。
四、数学思想的启发(200字)
数学思想不仅仅是应用,更可以启发我们的思维。例如,数学中的证明过程需要我们思考问题的逻辑性和严谨性,这对我们解决其他问题时也是有用的。同时,数学中的模型和公式可以帮助我们更好地理解和分析复杂的现象。数学思想的灵活运用也能培养我们的创新能力和解决问题的能力,这在现实生活和工作中也是非常重要的。
五、结语(200字)
数学思想是一种强大而神奇的力量,它不仅仅是解决数学问题的工具,更是培养我们思维能力和提升我们创造力的途径。通过学习数学,我深刻地体会到了数学思想的美妙和影响力。它不仅应用于生活中的各个领域,还可以启发和改变我们的思维方式。因此,我愿意将数学思想作为我的宝贵财富,继续探索数学的奥秘,不断发现其中的乐趣和挑战。
数学思想心得体会篇二
在新世纪之初,我国开始了建国以来第八次基础教育课程改革。作为成千上万的教育工作者中的一员,我将以高度的历史责任感和最大的热情投入到这场改革中去。数学作为人们生活、劳动和学习必不可少的工具,是一切重大技术发展的基础。新的数学课程标准要求数学教育面向全体学生,体现基础性、普及性和发展性的特点,实现:1)人人学有价值的数学;2)人人都能获得必须的数学;3)不同的人在数学上得到不同的发展。从小学数学过渡到初中数学,学习内容、研究方法,都是个转折,尤其是数学思想认识上要产生质的飞跃。初一数学新教材蕴含了通常的数学思想,这些数学思想在学生今后的数学学习中会不断地运用到。因此,教学好初一新教材中的数学思想是十分重要的。
在初一新教材中所包涵的数学思想概括起来主要有:1、合理的三维空间思想;2、数形结合思想;3、用字母表示数的思想;4、分类思想;5、方程思想;6、化归思想;7、概率统计思想。下面我将对新教材(北师大版)中的`几种数学思想及其教学谈谈我粗浅的想法和体会。
一、合理的三维空间思想
新的初一数学教材(北师大版)的第一章就是《丰富的图形世界》,作为衔接小学数学与初中数学的内容,与原来的教科书不同。这样安排,显然拉近了数学和学生的距离,消除学生刚踏入初中时学习第一节数学课所产生的陌生和恐惧感。实际的图形给同学们“看得见,模得着”的感觉,但要从其中抽象出具体的数学模型,就得让学生通过不断的观察,在展开与折叠、切截等数学活动过程中,认识常见的基本几何体及点、线、面和一些简单的平面图形等,形成一定的空间思想。同时,通过安排对某些几何体主视图、俯视图、左视图的认识,在平面图形和几何体的转换中发展学生的空间观念,提高学生的空间思维能力。
在我的实际教学中,我充分调动学生的个人思想和主观能动性,给予足够的空间和时间,通过每个学生自己的动手操作去体会教材所安排的内容,同时去发现新的问题。譬如在“面动成体”这一知识点上,在实际生活中很难找到相关实例,在上该课的前一天我就让学生去观察生活中的例子,在课堂上,我让学生充分讨论,学生就找到了“某些高档宾馆的旋转大门,面动起来就成为圆柱体”“校门口的自动门,将截面理想化为长方形,那么运动起来就是长方体”等等。这样,学生接受知识的同时,也提高了自主学习的能力。
二、用字母表示数的思想
[1][2][3]
数学思想心得体会篇三
数学作为一门精确的学科,一直以来都是让学生头疼的存在。然而,随着时间的推移,我逐渐发现数学不仅仅是一种学科,更是一种思维方式。通过学习数学,我深刻体会到数学思想的重要性,并且在实践中获得了一些心得体会。
第一段:数学思想的重要性
数学思想是一种严密的逻辑思维,具有指导和解决问题的独特能力。在我学习数学过程中,它告诉我不仅要注重答案,更要注重解决问题的方法。通过数学思维,我不仅能够迅速找到问题的关键点,更能够建立逻辑关系,理顺思路。数学思维帮助我在面对复杂的问题时保持冷静,不被琐碎的细节所迷惑,而是能够从整体出发,追求问题的本质。正是因为数学思维的存在,我在学习其他学科时也能够灵活运用逻辑思维,更好地解决问题。
第二段:数学思想的具体体现
数学思想通过解决具体的数学题目,让我体会到它的具体应用。例如,当我遇到一个关于平行线的问题时,我会迅速意识到要使用“对应角相等”这个关键点。通过数学思想的指导,我可以准确无误地找到问题的解决方法。而在解决实际生活中的问题时,数学思想同样能够派上用场。比如,我想要计算某个物体的重量,我可以使用数学思维中的计算方法,利用已知的数据进行推算。数学思想对我而言已经成为一种习惯,使我能够迅速分析问题,并找到最佳解决方案。
第三段:数学思想对思维能力的影响
数学思维的训练对我的思维能力有着深远的影响。在学习中,我需要进行逻辑推理和分析,这培养了我批判性思维和创造性思维。数学思维还让我充分发挥自己的想象力,尝试各种可能性。在解决问题时,我有时还可以创造性地运用已学知识,并对问题进行拓展。这种思维方式使我不仅能够在数学学科中获得好成绩,还能够在其他学科中得到更好的发展。
第四段:数学思维的培养方式
数学思维需要长时间的培养和磨练。要培养良好的数学思维,首先要掌握基础知识,理解数学原理和概念。其次,要勇于尝试解决各种类型的数学题目,这样能够提高思维的敏捷性和灵活性。此外,与他人交流讨论问题也是培养数学思维的好方法,可以从他人的思考中获得启发和提高。总之,通过大量的实践和积累,数学思维才能够得到有效的培养和发展。
第五段:数学思维对个人发展的意义
数学思维不仅对学术有着深远的影响,更对个人发展有着重要意义。数学思维能够让我们保持冷静客观的态度,不被感情左右;它也能够让我们保持清晰的思维,不被外界干扰。数学思维对我们形成合理决策,解决各种问题都起到推动作用。此外,数学思维还能培养我们逻辑思维和分析能力,使我们具备解决各种复杂问题的能力。综上所述,数学思维不仅仅是解决数学问题的方式,更是一种全面发展的工具,对我们的生活和工作有着重要的启示。
总结:数学思想是一种重要的思维方式,通过学习数学,我深刻领悟到了数学思想的重要性,并从中获得了许多心得体会。数学思维在解决问题、培养思维能力、个人发展等方面都起到了重要的作用。我们应该重视并培养好自己的数学思维,使其成为我们学习和生活的助力。
数学思想心得体会篇四
夏建平(作者系中共长沙市天心区委书记)
解放思想引领社会实践,攸关事业成败,是发展中国特色社会主义事业的一宝。笔者以为,解放思想就是通过解剖自我、解放自我,达到新境界、增强新活力、提升新水平,更好地形成发展推动力。
剖析思想追求,提升发展的科学性。解放思想是对传统思维和惯性思维的突破,需要奋斗、需要拼搏、需要牺牲、需要成本,平平淡淡、求稳怕乱,不可能解放思想。近年来,我区积极抢抓长株潭经济一体化、省府新区开发建设、长沙“南进”等重大历史机遇,坚持在解放思想中创新观念,在创新观念中破解难题,在破解难题中推动发展,连续多年实现了高基数上的新增长,展现了较好的发展态势和喜人来势。但越发展我们越深刻地感觉到,现状与科学发展观的高要求、与长株潭“两型社会”核心区建设的高标准还有很大差距,尤其是产业结构不合理、体制机制欠优化是我们不容回避的问题。有差距并不可怕,关键是要能够知难而进、知耻后勇,化压力为动力,变差距为潜力。在思想解放大讨论活动中,我们坚持解放思想首先就要从自身入手,主动把自己摆进去,敢于亮丑、善于揭短,自觉把天心区发展放在全市、全省乃至全国范围内来审视,真正把思想解放的追求定位到“两型社会”建设上,把思想解放的归宿落实到实践科学发展观上,全力推动又好又快发展。
剖析思维方式,提升发展的针对性。针对客观存在的不科学但惯性起作用的发展观、政府就是经济社会的管制者等陈旧观念,进一步解放思想,务求不能用滞后的眼光来看待新一轮思想解放,不能用习惯的思维来考虑新一轮思想解放,不能用陈旧的方法来实现新一轮思想解放,不能用简单的标准来衡量新一轮思想解放。在发展的方式上,我们要充分发挥长株潭城市群核心区的地缘优势、保护良好的生态优势、率先发展的基础优势和先行先试的工作优势,致力改变目前依然存在的经济发展过分依赖投资增长的不利局面,坚决摒弃先污染再治理、先破坏再整治的老路,积极地试,大胆地闯,力争为省、市“两型社会”综合配套改革试验探索新经验、争做新贡献。在破解难题上,我们着力建立项目准入制度、大力发展“两型产业”、拓宽融资渠道、坚持先安后拆等措施来推动难题破解。在体制机制上,我们积极探索体现区别和差别的利益分配机制、凸现有为位的选人用人机制、坚持求实和求成的办事决策机制、善断失误和耽误的是非评判机制,构建解放思想、推进发展的长效机制。
剖析思路定位,提升发展的有效性。思想有多远,发展就能走多远。天心区多年来的发展历程就是一个不断解放思想、完善提升、创新突破的发展过程。近年来,虽然我区产业含量在经济发展中的比重稳步增长,基础设施得到了极大完善,群众的幸福指数明显提高,但我区作为长株潭三市融城的核心区,在科学发展观和“两型社会”建设中不能满足眼前发展,追求一般要求。立足新起点,面对新形势,我们应当在经济发展上瞄准最高标准,在社会建设上追求最大和谐;要强化基础先行理念,打造功能辐射区;要强化统筹发展理念,特别是要强化以人为本理念,打造和谐示范区。
数学思想心得体会篇五
作为一门极富挑战性的学科,数学常常被认为是一种抽象而冷漠的学问。然而,在接触数学的过程中,我却深深感受到数学思想的独特魅力。数学思想不仅能锻炼我们的逻辑思维和解决问题的能力,还能带给我们乐趣和启示。在我学习数学的过程中,我体会到了数学思想的重要性,并且意识到用数学思维来思考问题是一种非常宝贵的能力。以下是我对数学思想的一些心得体会。
首先,数学思想教会了我如何在面对困难时保持耐心和坚持。很多时候,数学问题并不是一眼就能看出答案的,而是需要我们通过不断尝试和思考来解决。在解题的过程中,我经常会遇到各种各样的困难,有时候甚至会觉得束手无策。但正是数学思想教会了我要坚持不懈地追求解决问题的方法和答案,尽管这可能需要花费很多时间和精力。通过不断地解题和思考,我逐渐明白了数学思想中的规律和逻辑,并且在解决问题时能够保持冷静和耐心。
其次,数学思想还教会了我如何从不同角度来思考问题。数学思维是一种独特的思维模式,它能够帮助人们从不同的角度和层面来看待问题,并且发现问题的本质和规律。在数学思维的启发下,我逐渐摒弃了仅依靠记忆和机械运算的方式来解题,而是开始尝试用抽象和逻辑的思维方法来解决问题。通过不断地思考和总结,我发现了许多问题存在着隐藏的规律和联系。这种观察和发现的能力不仅可以用于数学问题,更可以应用于其他学科和现实生活中。
另外,数学思想还教会了我如何在面对失败时保持乐观和积极。数学是一个一错就错的学科,在解题的过程中,一步错了就有可能导致整个答案错误。在做题的过程中,我经常会遇到错误和挫折。然而,正是数学思想告诉我要从错误中吸取经验教训,并且勇敢地尝试不同的方法和角度。通过不断地尝试和纠正,我逐渐改善了自己在解题上的能力,并且在遇到困难时也能够保持积极乐观的态度。
最后,数学思想教会了我如何用逻辑和分析的方式来思考问题。数学是一门强调推理和证明的学科,它要求我们在解题时要有严谨的逻辑和分析能力。在数学的学习过程中,我逐渐培养了用逻辑和演绎的方式来思考问题的习惯。通过分析问题的条件和要求,我能够有条不紊地进行推理和证明,最终得出正确的结论。这种逻辑和分析能力在解决数学问题的同时,也对我的思维和分析能力起到了积极的影响。
总的来说,数学思想是一种强大而有益的思维方式,它可以帮助我们克服困难,提高思维能力,培养乐观的态度,促使我们用逻辑和分析的方式来解决问题。在我学习数学的过程中,我不仅学到了数学知识,更体会到了数学思想的独特魅力。我相信,数学思维能力将会在我的学习和生活中起到越来越重要的作用,并且将给我带来更大的收获和成就。
数学思想心得体会篇六
在初中数学教学过程中,我们要找出一条行之有效的`教学思想和方法,以便使我们在教学过程中取得最佳的成绩.
作者:董静作者单位:贵州省毕节市海子街三中刊名:新课程(教师版)英文刊名:xinkecheng年,卷(期):“”(7)分类号:关键词:初中数学数学思想数学方法数学思想心得体会篇七
《数学思想》是一本富有创意和启发性的书籍,阐述了数学的基本思想和重要概念。读完此书后,我对数学的理解和认识都有了极大的提升。在这篇文章中,我将分享我从这本书中获得的经验和体验。
第二段:书中的基本思想
本书的核心是解释数学是如何发展和构建的。它将重点放在了数学中的思想过程,并强调“数学家的思想做法”对科学和数学的发展具有重要意义。书中通过具体的例子和数学公式详细描述了数学思想过程。这些概念对我构建了一个大致的数学框架,让我更好理解之前的数学内容和更好地学习新的内容。
第三段:书中的重要概念
书中还解释了数学中的一些重要概念,如集合、映射和二元关系。通过这些概念,我对数学的基础有了更深入的了解。例如,通过学习映射,我明白了函数最基础的定义,这为我以后学习更高阶的微积分等埋下了良好的基础。
第四段:书中的应用
书中的数学思想和概念还具有应用性。例如,书中介绍了Kaprekar过程和Syracuse问题等实用性很强的数学问题,让我了解到数学在解决实际问题中的重要性。我还使用数学上学过的一些方法和思想来解决生活中遇到的问题,例如利用集合来解决购物时的优惠问题。
第五段:结论
总之,《数学思想》是一本重要的数学书籍,它为读者提供了理解数学的深层次思想和方式。数学是固有的逻辑和想象的结晶,良好的数学思维方法不仅有助于提高数学成绩,也有助于理解其他学科及实践方面的应用。希望更多的人去阅读这本书,让我们一同感受数学思想的奇妙魅力。
数学思想心得体会篇八
生活中不是没有美,只是缺乏发现美的眼睛。学习数学也是一样,要带着发现的眼睛去观察。学好数学固然重要,但是要上学生意识的数学的美,发现数学的美才是学生持续学习数学的动力,这样才有利于学生的可持续法展。
听过这样一句话:“孩子在入学时是一个问号,却在毕业时成了一个句号。”也就是在孩子最初的认识里数学是美的,只是在逐渐的学习中改变了自己的想法。问题究竟出在哪里呢?这值得我们深思,尤其是值得教育者深思。怎样才能使孩子回到最初的认识,回归数学美。
首先我觉得要对自己执教的班级做一份问卷调查,了解一下数学在学生心目中的现状,及学生心目中数学美应该隐藏在哪里,以及心目中的数学课应该是怎么样的。这样的话教师可以做到心中有底,对症下药。还可以找到认为数学是美的学生惊醒一次小的座谈会,让他们说说自己的想法。
要想引导孩子认识数学美,前提是教师本身认为数学中的美,这样才能教出认为数学是美的学生。如何正确的引导孩子认识到数学中的形形色色的美以及采用什么样的方式是我们需要思考的问题。杨正宁教授在中美学生的对比中谈到:“中国学生学得多,悟得少;美国学生学得少,却悟得多。这就是中国教育不出诺贝尔奖得者的重要原因。纵观我们的教学,学生总是被塞得满满的,这就是我们的学生体会不到数学美的重要原因。因此我觉得首先要将学生从繁重的课业中解脱出来,给孩子更多的思考和实践的机会。以学生的直接经验为主辅助以必要的间接经验。就像著名的教育家杜威说的那样“在做中学”。让孩子自己动手自己体会自己总结,进而更加深刻的体会到成功感,以培养孩子欣赏数学美认识数学美进而创造数学美。另外,在日常的教学中要给学生一些启发、一些思考的余地和自由掌握的时间,使学生可以自由地活动,从“无”中生出“有”。培养学生自己发现问题,解决问题的能力。让学生自己去思考自己去领悟一些东西。
另外我认为也要在日常的教学中给孩子营造一个良好的感受数学美的氛围。在学生的周围时刻的感染学生,影响学生。教师可以准备一些精美的反应数学美的图片,让学生感受数学美。也可以让学生自己去寻找一些自己认为包含数学美的图片或者视频,让学生自己分享一下。或者让学生自己感悟一些伟大的数学家心目中的数学。
我想只有让数学回归自然回归生活,才能唤醒孩子心中的数学美。
数学思想心得体会篇九
转化思想是数学的基本思想之一,我们在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
有些应用题,按原题的条件,数量关系解答起来比较复杂,如果根据知识之间的内在联系,变换一种方式去思考,恰当地运用直观图形转化题中的数量关系,把原来的问题转化为另一种容易解决的问题,从而打开解题思路,顺利解决问题。例如:条件的转化,单位“1”的转化、行程问题、分数问题与比例应用题之间的转化等等。
在运用画图策略解决问题的过程中,除了渗透上述数学思想方法外,还可以适时渗透假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。在教学中渗透和运用这些教学思想方法,不仅可以增强学习的趣味性,调动学生学习的主动性,还可以发展学生思维的灵活性和数学智能,有助于学生数学素养的全面提升。图形不仅直观、简洁、利于思考,而且其信息量大,概括性强,同时图还有助于记忆。因此,图形是帮助人类思考的极好工具。斯蒂恩说:“如果一个特定的问题可以转化为一个图像,那么就整体地把握了问题。”确实,“画图策略”在理解概念、解决问题以及空间与图形等各个领域都有很大的优势,大致归结为以下三个优势:
第一,它符合小学生的认知发展水平,能够有效地促进学生的理解过程。
低年级学生对抽象数学知识的接受能力和理解能力比较弱。当理解困难时如果在纸上画一画,借助图形的直观作用,引发联想,就能化抽象为直观,揭示概念本质;化复杂为简单,呈现数量关系;化隐性为显性,再现想象模型;化无序为有序,梳理事件规律等等。第二,它切合小学生学习过程的需要,对学生思维能力的发展有促进作用。
根据学生的认知规律,学习都会经历一个从“外化”到“内化”的过程。而学生在画图的过程中,读题、明确问题、寻找条件,把文字转化成图画,发现数量关系,再把图画转成思维,这一系列脑力活动完整地搭建了这个从“外化”到“内化”过程。
第三,它对强化学生的学习兴趣、学习动机,提高学生的学习质量有明显效果。
有浓厚的兴趣才有探究新知的欲望,才有学习的动力。尤其是低年级学生,他们对纯粹的文字数学题并不感兴趣,注意力也不能持续太长。在教学中教师如果能引导学生动笔画一画,就能让学生在不经意地涂画中轻松地学会知识。
认识到了“画图策略”的优越性,怎样引领低段学生得以掌握呢?有几点不成熟的想法:
第一方面是注重教师在课堂教学中对“画图策略”的正确导向作用。首先教师要提高自身的数学专业素养,尤其是教师在“画图策略”技能上的素质。
教师需要对数学知识和画图策略的应用上研究透彻,寻找最精当的方式,深入浅出地达到教学目的。这需要教师对教材进行精心分析,寻求对不同知识板块个性化的图解。
其次是“画图策略”的能力训练需要教师从一年级就应该引起重视。
一、二年级更多的是读图训练。如果良好的读图的习惯训练不够,那么以后根据信息用图示来正确表达也将存在问题。比如,如果乘法的意义没能建立清晰的表象,那“倍”的概念建立就会出现困难,要求学生用画倍数关系的线段图分析复杂的问题就更困难了。所以教师在教学过程中首先要重视对“图”意识的正确渗透和引导。
数学思想心得体会篇十
数学建模作为一种应用数学的方法,不仅有助于理论的发展,也能在现实问题中提供有效的解决方案。在学习数学建模的过程中,我深感数学建模思想的重要性和灵活性。以下是我对数学建模思想的心得体会。
首先,数学建模思想注重问题的抽象和简化。在现实生活中,问题往往非常复杂,涉及大量的变量和因素。而数学建模的目的是通过数学模型来描述和分析问题,因此必须对问题进行适当的抽象和简化。这需要我们深入理解问题的本质,找出其中的关键因素和规律,并将其转化为数学符号和方程。通过这种抽象和简化的过程,我们可以将复杂的问题变为具体的数学模型,从而更容易进行分析和求解。
其次,数学建模思想强调问题的实际性和可行性。数学建模不仅仅是一种理论研究的工具,更是为解决实际问题而服务的方法。因此,在建立数学模型的过程中,我们必须考虑问题的实际背景和约束条件,确保所建立的模型能够真实地反映问题的本质,并能给出可行的解决方案。这需要我们具备广泛的知识背景和实际问题解决的能力,能够从多个角度和层面分析问题,提出合理的建模思路和方法。
第三,数学建模思想强调定量分析和数值计算。数学建模不仅仅是对问题进行描述和分析,更重要的是能够给出定量的结果。这要求我们在建立数学模型的过程中,注重变量的量化和参数的确定,确保所得到的结果能够具有实际意义。同时,数学建模也需要运用数值计算的方法,以解决复杂的数学问题和模型求解。这需要我们熟悉数值计算的基本原理和方法,具备良好的编程和计算机应用能力。
第四,数学建模思想重视模型的验证和调整。建立数学模型只是解决问题的第一步,更重要的是能够对模型进行验证和调整。因为在现实问题中,模型往往只能近似地反映问题的本质,存在误差和不确定性。因此,我们需要通过实际数据的收集和对比,对模型进行验证和调整,以提高模型的准确性和可靠性。这也需要我们具备良好的数据处理和统计分析能力,能够将理论性的模型与实际性的数据相结合,使模型更加符合实际情况。
最后,数学建模思想强调多学科的综合应用。在现实世界中,问题往往是复杂的、综合的,涉及多个学科和领域。因此,数学建模需要我们综合运用数学、物理、化学、生物等多个学科的理论和方法,来解决复杂的实际问题。这要求我们具备广泛的学科知识和跨学科的应用能力,能够灵活运用各学科的理论和方法,形成综合性的数学建模思维。
总之,数学建模思想是一种创造性的、实用的思维方式,对于解决复杂的实际问题具有重要的意义。通过学习数学建模,我深感数学建模思想的重要性和灵活性,它不仅提高了我对数学的理解和应用能力,更拓宽了我的知识面和解决问题的能力。在今后的学习和工作中,我将继续发扬数学建模思想,努力运用数学建模的方法和技巧,为解决实际问题做出更多的贡献。