高一数学不等式教案(专业18篇)
教案的评估应当全面、客观,以促进教学过程的不断改进和提高。教案的编写要注重教学效果的评估和反思,进一步完善教学方案。教案范文展示了不同教学模式和教学策略的应用。
高一数学不等式教案篇一
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
高一数学不等式教案篇二
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
将本文的word文档下载到电脑,方便收藏和打印。
高一数学不等式教案篇三
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路。
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本p8,习题1.1a组第1题。
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
由学生整理学习了哪些内容六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
高一数学不等式教案篇四
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
一、知识归纳
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。
高一数学不等式教案篇五
突出重点.培养能力.。
三、课堂练习。
教材第13页练习1、2、3、4.。
【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:
凡有阴影部分即为所求.。
四、小结。
提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.。
五、作业。
习题1至8.。
笔练结合板书.。
倾听.修改练习.掌握方法.。
观察.思考.倾听.理解.记忆.。
倾听.理解.记忆.。
回忆、再现内容.。
落实。
介绍解题技能技巧.。
内容条理化.。
课堂教学设计说明。
2.反演律可根据学生实际酌情使用.。
高一数学不等式教案篇六
3、了解集合元素个数问题的讨论说明
通过提问汇总练习提炼的形式来发掘学生学习方法
培养学生系统化及创造性的思维
[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
高一数学不等式教案篇七
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系。
2、了解集合的运算包含了集合表示法之间的转化及数学解题的`一般思想。
3、了解集合元素个数问题的讨论说明。
通过提问汇总练习提炼的形式来发掘学生学习方法。
培养学生系统化及创造性的思维。
[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪。
[教学方法]:讲练结合法。
[授课类型]:复习课。
[课时安排]:1课时。
[教学过程]:集合部分汇总。
本单元主要介绍了以下三个问题:
1,集合的含义与特征。
2,集合的表示与转化。
3,集合的基本运算。
一,集合的含义与表示(含分类)。
1,具有共同特征的对象的全体,称一个集合。
2,集合按元素的个数分为:有限集和无穷集两类。
高一数学不等式教案篇八
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!
高一数学不等式教案篇九
1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质。
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
高一数学不等式教案篇十
所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。
知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。
过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。
情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。
三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。
高一数学不等式教案篇十一
本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1)、、各等于什么?
2)、、各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
对比、归纳、总结
1.重点:理解并掌握二次根式的性质
2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
1课时
五、教b具学具准备
投影仪、胶片、多媒体
复习对比,归纳整理,应用提高,以学生活动为主
一、导入新课
我们知道,式子()表示非负数的算术平方根.
问:式子的意义是什么?被开方数中的表示的是什么数?
答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1);(2);(3);
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
高一数学不等式教案篇十二
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.。
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.。
1.新课导入。
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。
学生举例:平行四边形的对角线互相平.……(1)。
两直线平行,同位角相等.…………(2)。
教师提问:“……相等的角是对顶角”是不是命题?……(3)。
(同学议论结果,答案是肯定的.)。
教师提问:什么是命题?
(学生进行回忆、思考.)。
概念总结:对一件事情作出了判断的语句叫做命题.。
(教师肯定了同学的回答,并作板书.)。
(教师利用投影片,和学生讨论以下问题.)。
例1判断以下各语句是不是命题,若是,判断其真假:
2.讲授新课。
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。
(1)什么叫做命题?
可以判断真假的语句叫做命题.。
(2)介绍逻辑联结词“或”、“且”、“非”.。
命题可分为简单命题和复合命题.。
(4)命题的表示:用p,q,r,s,……来表示.。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。
对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.。
3.巩固新课。
(1)5;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0,则a=0.。
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。
高一数学不等式教案篇十三
教学重点分析法。
教学难点分析法实质的理解。
教学方法启发引导式。
教学活动。
(一)导入新课。
(教师活动)教师提出问题,待学生回答和思考后点评.。
(学生活动)回答和思考教师提出的问题.。
[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?
[问题2]能否用比较法或综合法证明不等式:
在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)。
设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,
激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式.。
(二)新课讲授。
【尝试探索、建立新知】。
[问题2]当我们寻找的充分条件已经是成立的`不等式时,说明了什么呢?
[问题3]说明要证明的不等式成立的理由是什么呢?
分析法证明不等式的概念.(见课本)。
【例题示范、学会应用】。
(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.。
高一数学不等式教案篇十四
用“”或“”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
不等式有以下性质:
不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa)的形式。
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
高一数学不等式教案篇十五
1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;。
3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
教学难点。
熟练并准确地解一元一次不等式。
知识重点。
熟练并准确地解一元一次不等式。
教学过程。
(师生活动)设计理念。
你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.以学生身边的事例为背景,突出不等式与现实的联系,这个问题为契机引入新课,可以激发学生的学习兴趣。
探究新知。
1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.
2、例题.
解下列不等式,并在数轴上表示解集:
(1)x50(2)-4x3。
(3)7-3x10(4)2x-33x+1。
分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
立解决;还有一些学生虽不能解答,但在老师的引导下也能受到启发,这比单纯的教师讲解更能调动学习的积极性.另外,由学生自己来纠错,可培养他们的批判性思维和语言表达能力.
比较不等式与解方程的异同中渗透着类比思想.
巩固新知。
1、解下列不等式,并在数轴上表示解集:
(1)(2)-8x10。
2、用不等式表示下列语句并写出解集:
(1)x的3倍大于或等于1;(2)y的的差不大于-2.
解决问题。
测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?让学生在解决问题的过程中深刻感悟数学来源于实践,又服务于实践,以培养他们的数学应用意识。
总结归纳围绕以下几个问题:
1、这节课的主要内容是什么?
2、通过学习,我取得了哪些收获?
3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨.让学生自己归纳小结,给学生创造自我评价和自我表现的机会,以达到激发兴趣、巩固知识的目的。
小结与作业。
布置作业。
1、必做题:教科书第134~135页习题9.1第6题(3)(4)第10题。
2、选做题:教科书第135页习题9、12题.
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
通过创设与学生实际生活密切联系的向题情境,并由学生根据自己掌握的知识与经验列出不等式,探究它的解法,可以激发学生的学习动力,唤起他们的求知欲望,促使学生动脑、动手、动口,积极参与教学的.整个过程,在教师的指导下,主动地、生动活泼地、富有个性地学习.
新课程理念要求教师向学生提供充分的从事数学活动的机会.本课教学过程中贯穿了尝试引导示范归纳练习点评等一系列环节,旨在改变学生的学习方式,将被动的、接受式的学习方式转变为动手实践、自主探索和合作交流等方式.教师的组织者、引导者与合作者的角色在这节课中得到了充分的演绎.教师要尊重学生的个体差异,满足多样化学习的需求.对学习确实有困难的学生,要及时给予关心和帮助,鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,勇于发表自己的观点.除了演好组织者、引导者的角色外,教师还应争当伯乐和雷锋,多给学生以赞许、鼓励、关爱和帮助,让他们在积极愉悦的氛围中努力学习.
高一数学不等式教案篇十六
填空:
教师追问:第三题()里可以填多少个数?第4题呢?
为什么3、4题()里可以填无数个数?
()里填任何数都行吗?哪个数不行?(板书:零除外)。
这里为什么必须“零除外”?
(板书课题:分数基本性质)。
4.深入理解分数基本性质.。
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.。
1.用直线把相等的分数连接起来.。
2.把下列分数按要求分类.。
和相等的分数:
和相等的分数:
3.判断下列各题的对错,并说明理由.。
4.填空并说出理由.。
5.集体练习.。
四、照应课前谈话.。
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.。
这节课你有什么收获?
六、布置作业.。
1.指出下面每组中的两个分数是相等的还是不相等的.。
2.在下面的括号里填上适当的数.。
将本文的word文档下载到电脑,方便收藏和打印。
高一数学不等式教案篇十七
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析。
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析。
(一)教学目标。
1.理解不等式的概念。
2.理解不等式的解与解集的意义,理解它们的区别与联系。
3.了解解不等式的概念。
4.用数轴来表示简单不等式的解集。
(二)目标解析。
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析。
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析。
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计。
(一)动画演示情景激趣。
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知。
小组讨论,合作交流,然后小组反馈交流结果.
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)。
高一数学不等式教案篇十八
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1)全体自然数0,1,2,3,4,5,
2)代数式.
3)抛物线上所有的点。
4)今年本校高一(1)(或(2))班的全体学生。
5)本校实验室的所有天平。
6)本班级全体高个子同学。
7)著名的科学家。
上述每组语句所描述的对象是否是确定的?
二、1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________。
三、集合中元素的'三个性质:
四、元素与集合的关系:1)____________2)____________。
五、特殊数集专用记号:
4)有理数集______5)实数集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例题讲解:
例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()。
a,直角三角形b,锐角三角形c,钝角三角形d,等腰三角形。
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;。
2)函数的全体值的集合;。
3)函数的全体自变量的集合;。
4)方程组解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇数组成的集合;。
8)所有正偶数组成的集合;。
例3、用符号或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)设,,则。
例4、用列举法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的数。
2.图中阴影部分点(含边界)的坐标的集合。
课堂练习:。
例7、已知:,若中元素至多只有一个,求的取值范围。
思考题:数集a满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合a不可能是单元素集合。
小结:
作业班级姓名学号。
1.下列集合中,表示同一个集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.则()。
a.b.c.d.
3.方程组的解集是____________________.
4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.
5.设集合a=,b=,
c=,d=,e=。
其中有限集的个数是____________.
6.设,则集合中所有元素的和为。
7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,试用列举法表示集合b=。
9.把下列集合用另一种方法表示出来:
(1)(2)。
(3)(4)。
10.设a,b为整数,把形如a+b的一切数构成的集合记为m,设,试判断x+y,x-y,xy是否属于m,说明理由。
11.已知集合a=。
(1)若a中只有一个元素,求a的值,并求出这个元素;。
(2)若a中至多只有一个元素,求a的取值集合。
12.若-3,求实数a的值。
【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文:集合含义及其表示能给您带来帮助!