初中数学分钟试讲教案及反思(精选19篇)
教案应该是灵活的,能够根据实际教学情况进行灵活调整和改进。教案应当充分考虑学生的评价和反馈,及时进行教学调整和改进。请大家参考下面的教案样本,了解教案的基本结构和编写要点。
初中数学分钟试讲教案及反思篇一
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
初中数学分钟试讲教案及反思篇二
1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;。
2.会初步应用正负数表示具有相反意义的量;。
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;。
4.培养学生逐步树立分类讨论的思想;。
5.通过本节课的教学,渗透对立统一的辩证思想。
教学建议。
初中数学分钟试讲教案及反思篇三
活动目标:
1、在游戏活动中归纳、总结、学习6的组成。
2、在操作活动中不断探索数的多种分法,并学会记录。
教学重、难点:
在游戏活动中归纳、总结、学习6的组成。
活动准备:
花片、小树、小动物图片、纸盒、糖果、笔、纸、数字卡片等。
活动过程:
一、凑数游戏《苹果和生梨》。
请1个幼儿上来带领大家玩凑数游戏。
春天的花园里有个数学王国,小朋友和老师一起到数学王国找一找那些东西的数量是6,然后你可以把6的.分成全玩出来,才可以到其它地方玩。把你的发现写在纸上。
二、幼儿分组操作。
1、根据自己的能力选择游戏。
2、教师巡回指导:重点指导有困难的幼儿,适当的引导和帮助。
三、幼儿交流讨论。
2、幼儿各自介绍自己的发现。
四、学习6的组成。
1、教师:今天小猫的一家也到数学王国来玩了,数一数有几只猫?用数字几来表示?看看它们长得都一样吗?引导幼儿从猫的大小、颜色、花纹、蝴蝶结来分。
3、教师归纳:6有5种分法,6可以分成5和1,6可以……,它们合起来都是5送糖果。我们小朋友本领真大,不但学会6的组成,还学会了记录,现在我们一起准备好,开上小汽车和小猫们一起到数学王国去玩吧。(听音乐,幼儿做开汽车动作)数学王国到了,看看国王今天都准备了什么礼物?(各种糖果)国王还准备了这么多糖果盒子,请我们小朋友帮助他来包装糖果。记住,每个盒子了只可以装6粒糖果。你一边装一边说,几粒红色的糖果、几粒兰色的糖果、或几粒黄色的糖果、几粒绿色糖,一共是6粒糖果。装好以后你可以送给周围的爸爸妈妈检查一下,也可以给好朋友检查一下,你对吗?如果正确了就请你把糖带回家,可送给爷爷、奶奶、外公、外婆等。
活动反思:
本节课目标很明确,就是学习理解“6”的组成,懂得交换两个部分数的位置合起来总数不变的规律。因为数学知识具有逻辑性特别强的特点。我们应该在数学活动中应该提供一些渗透着正确的、幼儿可接受的、可感兴趣的数概念的活动材料,让幼儿通过与材料的相互作用,理解数学知识、发展思维能力。
初中数学分钟试讲教案及反思篇四
教学目标:
1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过操作、观察、交流进一步体会平均数的意义,学会计算简单数据的平均数。
2.经历运用平均数的知识解释简单生活现象、解决简单实际问题的过程,进一步积累分析和处理数据的方法,发展统计观念。
3.在活动中,进一步培养合作学习的意识和能力。
4.在解决实际问题中,能体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
重点:理解平均数的意义,学会求简单数据的平均数。
难点:理解平均数的意义。
对策:创设丰富的问题情境,提供学生自主探索的平台,学生充分操作、观察、交流。
教学过程:
一、解决问题,认识平均数。
(一)创设情境,收集信息。
情境:三1班第一小组有9人,进行投篮比赛,每人投10次。
呈现成绩统计图,介绍条形统计图名称、横轴、纵轴。
生:说说从统计图中知道的信息。
初中数学分钟试讲教案及反思篇五
二、教学目标。
1.经历过一点、两点和不在同一直线上的三点作圆的过程。
2..知道过不在同一条直线上的三个点画圆的方法。
3.了解三角形的外接圆和外心。
三、教学重点和难点。
重点:经历过一点、两点和不在同一直线上的三点作圆的过程。
难点:知道过不在同一条直线上的三个点画圆的方法。
四、教学手段。
现代课堂教学手段。
五、教学方法。
学生自己探索。
(一)、新授。
1.过已知一个点a画圆,并考虑这样的圆有多少个?
2.过已知两个点a、b画圆,并考虑这样的圆有多少个?
3.过已知三个点a、b、c画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑。
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个。
不在同一直线上的三个点确定一个圆。
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆。
让学生探索课本第15页习题1。
一起探究。
分析:带领学生完成课本第13页的表格,并完成2、3问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结。
七、练习设计。
p15习题2、3。
八、教学后记。
后备练习:
1.已知一个三角形的三边长分别是,则这个三角形的外接圆面积等于。
2.如图,有a,,c三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()。
a.在ac,bc两边高线的交点处。
b.在ac,bc两边中线的交点处。
c.在ac,bc两边垂直平分线的交点处。
d.在a,b两内角平分线的交点处。
初中数学分钟试讲教案及反思篇六
活动目标:
1、了解小学生下课10分钟适合做的事情。
2、模拟小学生下课10分钟的活动,尝试合理安排课间10分钟。
活动准备:
已参观过小学下课的前期经验;幼儿自备书包,小学学习用品若干;书籍、棋类、玩具和时钟等。
活动过程:
一、回忆交流,引出话题。
1、讨论:小学生怎么知道什么时候上课?什么时候下课?课与课之间可以休息几分钟?
2、观看时间:知道时钟的长针走2大格,就是10分钟。
二、下课10分钟该做什么。
1、在下课10分钟里,可以做哪些事情?
2、哪些事可做可不做?哪些事必须做好?“屈。老师。教。案网出处”(幼儿根据操作材料选择)。
3、教师按幼儿的讨论总结:
(1)必须做,如喝水、上厕所准备下一节课的'课本等。
(2)可选择做,如看图书、下棋、聊天、到操场上去转一圈等。
4、儿歌小结。
三、模拟小学生下课活动。
1、模拟下课,规定10分钟休息。
2、幼儿按自己的想法安排活动。
3、按上课铃声准时回到座位上。
四、交流。
1、教师检查幼儿是否准备好课本和文具。
2、介绍自己在课间10分钟所做的事情,说说这样安排的理由。
总结:课间10分钟是很有限的,必须做好下节课的准备工作和必要的休息,这样的10分钟才会过得有意义。
活动反思:
收获:课间十分钟活动是小学生活中一项十分重要的内容。然而幼儿园的孩子对此却比较陌生。因此教师在进行幼小衔接教育时有意设计了这一教学活动。在讨论交流的环节;进行的比较顺利;孩子们的表现和表达也不错;模拟体验的环节;孩子们玩得项目和小学里真正的十分钟还是有区别的;原始教案的这个环节是让孩子记录;我觉得简单得记录不能让孩子很好的体验课间十分钟的合理安排;有的孩子想得很好;但是做又是一回事;所以我把这个环节稍稍改动下;让孩子边记录边体验;孩子们还是有收获的;在ppt中我结合发生在幼儿身上的实际问题;结合幼儿身边的事情会让让孩子更有理解和领悟。我也结合了以前的表现收获了以下几点。
初中数学分钟试讲教案及反思篇七
§3.4简单的旋转作图。
一.教学目标。
(一)教学知识点。
1.简单平面图形旋转后的图形的作法.
2.确定一个三角形旋转后的位置的条件.
(二)能力训练要求。
1.经历对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.
初二数学上册教案2.能够按要求作出简单平面图形旋转后的图形.
(三)情感与价值观要求。
1.通过画图,进一步培养学生的动手操作能力.
2.在对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.
二.教学重点。
简单平面图形旋转后的图形的作法.
三.教学难点。
简单平面图形旋转后的图形的作法.
初中数学分钟试讲教案及反思篇八
活动目标:
1、培养初步的时间意识,感知时间与活动的关系。
2、在活动中发展自己制订计划、执行计划、调整计划的能力。
3、在设计与调整计划的过程中培养自我解决问题的意识和能力。
4、能大胆、清楚地表达自己的见解。
5、养成敢想敢做、勤学、乐学的良好素质。
活动准备:
1、物质准备:制作计划表的各种材料;铃鼓一个;前期幼小衔接内容的墙面环境支持。
2、经验准备:通过前期已开展过的“幼小衔接”的主题活动,幼儿对小学的生活有初步了解。
活动重难点:
让幼儿亲身体验“十分钟”的长短,并了解哪些活动适宜在这段时间进行。
理解活动内容和时间的关系及完善计划的能力。
活动过程:
1、活动引入:结合墙饰进行谈话,引出“课问十分钟”。
教师:前几天,小学生哥哥给我们介绍了小学的活动,你们还记得都有什么活动吗?
幼儿:课间十分钟、上课、做操……。
教师:你们还记得课间十分钟他们都做了什么吗?
幼儿:喝水、玩、准备书……。
2、活动开始:讨论并制订“课间十分钟”的活动计划。
我没踢球,要跑到操场上,来不及。
我上了厕所、喝了水,还看了书,但没画画就上课了。
我没上厕所,人多,后来就忘了。
(1)教师通过提问帮助幼儿小结模拟活动的情况,使其感受内容与时间的关系,发现调整计划的)必要。
(2)集体总结:
教师:你们认为“课间十分钟”必须要进行哪些活动?
幼儿:上厕所、喝水、准备下一节课的书、休息。
教师:你认为“课问十分钟”做什么内容的游戏合适?
幼儿:与小朋友说说话、玩翻绳、玩折纸、跳绳……。
教师:怎么安排这些活动呢?
幼儿:上厕所可以人少时去;应该先准备下次用的书;可以先喝水。
教师利用图示,帮助幼儿梳理与提升经验,获得调整计划的依据与策略。
个人反思:
1、活动中的优点:
(1)在教育内容的选择上,较好地达到了《细则》的要求“教育内容要符合幼儿当前发展的需要,同时要为幼儿长远发展奠定基础。教育内容要与本班幼儿已有经验和实际发展水平相适应,应是幼儿经过努力能够完成的。”“课问十分钟”不仅是幼儿现在非常感兴趣的话题,同时又是他们即将上小学面临的一个比较难把握的问题,所以开展此活动是非常有必要的。
(2)注重了“体验”的过程。只有当幼儿的知识和能力通过自己的体验发生变化时,学习才能称得上是主动的,只有幼儿自己建构的知识才能得到迁移并在实际中去运用。尤其是“时间”这一抽象的概念,只有让他们在较为真实的情境中来亲自感受、体验,才能了解时间的长短,了解时间和活动的关系,了解时间对于我们合理安排活动的重要意义。
(3)较好地体现了“幼儿园快乐与发展课程”对于大班活动提出的“活动化的共同学习”这一要求。注重了自主性、连续性、共同学习。例如,通过让幼儿自己制订活动的计划,并让他们根据自己的`计划去完成,并通过自己的体验来调整计划,很好地调动了他们活动的自主性和主动的清单,都想在课间十分钟内完成,有的想出来了却不会用标志表示等。
这正是老师了解幼儿真实经验的好机会,老师根据幼儿出现的问题才能用更适当的方法有针对性地引导幼儿解决问题,提高能力,这样的过程才是对幼儿的发展有好处的,朱老师在此方面把握很好。
我上了厕所、喝了水,还看了书,但没画画就上课了。
我没上厕所,人多,后来就忘了。
教师通过提问帮助幼儿小结模拟活动的情况,使其感受内容与时间的关系,发现调整计划的必要。
2、集体总结:
教师:你们认为“课间十分钟”必须要进行哪些活动?
幼儿:上厕所、喝水、准备下一节课的书、休息。
教师:你认为“课问十分钟”做什么内容的游戏合适?
幼儿:与小朋友说说话、玩翻绳、玩折纸、跳绳……。
教师:怎么安排这些活动呢?
幼儿:上厕所可以人少时去;应该先准备下次用的书;可以先喝水。
教师利用图示,帮助幼儿梳理与提升经验,获得调整计划的依据与策略。
3、本次活动是过程性的活动,而非结果性的活动。
幼儿对于“时间”的体验是不能通过一次活动就能完成的,“时间”对于幼儿来说的确太抽象了,需要一个很长的过程。教师不仅利用“课问十分钟”这个点,还可以根据具体情况进行更加丰富的体验活动,例如,一分钟可以做什么?在日常生活中让幼儿来观察时间,什么时问开始的?什么时间结束的用了多长时间?让幼儿慢慢积累对于“时间”的经验。
初中数学分钟试讲教案及反思篇九
本节课的内容是高中数学必修2第二章第二节《直线、平面平行的判定及其性质》的第二小节《平面与平面平行的判定》,用一课时完成。
现实生活中,平面与平面平行的关系的应用随处可见,充分运用大量的现实背景材料,使学生直观感知平面与平面的位置关系,体会平面与平面平行的结构特征及应用价值,从而激发学生的学习热情、形成正确的表象;再通过操作确认,思辩论证,进一步理解平面与平面平行的本质,进而归纳、概括出平面与平面平行的'判定定理。这样,可以培养学生观察、发现的能力、空间想象能力,使学生在合情推理的过程中,体会空间问题平面化的基本思想;在对抽象出的数学模型的分析过程中,发展学生的几何直觉,为此定理的灵活应用奠定基础。
平面与平面平行的判定定理,为判定平面与平面平行的位置关系提供了理论依据。
在该定理应用的过程中,学生可以经历将平面与平面平行的问题转化为两直线平行,线面平行的问题,即将立体几何问题转化为平面几何问题来解决,从而体会转化思想在解题中的应用,培养学生的推理论证能力。
因此,对平面与平面平行的判定定理的形成过程的探索,以及转化思想在解题中的应用,是本节课的重点。
3、体会数学来源于实践,又为实践服务的辨证唯物主义思想。
目标解析:教材淡化了对定理的证明,侧重于对几何体的直观感知,这就要在教学过程中多设置学生的自主观察环节及动手体会的过程。通过学生亲身经历观察、发现、猜想、直观感知、操作确认、思辩论证等定理形成与应用的全过程,才能使他们真正的逐步具备空间想象能力,以及体会等价转化思想在解决问题中的运用。
由于学生刚刚接触空间中的各种位置关系,所以他们还不具备很好的空间想象能力,没有形成解决空间问题的基本思想方法。但是,此前,学生已学习了直线与直线、直线与平面平行的判定,并且刚刚研究过直线与平面平行的判定方法,所以,学生已经知道对于空间问题的研究可以转化成对平面问题的研究,因此,利用转化的思想,把面面平行转化为“线线平行”,“线面平行”,学生应该容易理解。只是学生还需要再次经历从实际背景中抽象出数学模型、从现实的生活空间中抽象出几何图形的过程。因此,引导学生经历这个过程成为培养他们具备空间想象能力的重要环节。
为了更加自然的从实际背景中抽象出数学模型,本节课开始通过多媒体呈现了大量的生活中的两平面平行的图片,目的是使学生先对面面平行有一个视觉上的感知。然后,利用探究发现式的教学方法,通过实物观察、猜想、操作确认等活动,引导学生归纳、概括出平面与平面平行的判定定理;再在从实际背景中抽象出的数学模型——长方体中(动画演示),应用猜想的结论、伴随着一系列问题的提出,经过思辩论证,使学生在数学图形中印证定理。并学会利用数学语言解决问题。在学生独立解决问题的过程中,得到学生对知识掌握程度的反馈信息。
本节课充分利用现代教育技术手段,采用探究发现式的教学策略。
一、直观感知,引入课题。
播放大量图片,学生观察,创设情境。
二、动手实践,揭示定理。
(1)调整书的位置,使书与桌面平行;。
(2)通过动手操作,探究平面与平面平行的条件;。
(3)猜想平面与平面平行的判定定理。
三、建构模型,探究规律。
从水立方中抽象出几何模型;。
以长方体为载体进行论证,得出平面与平面平行的判定定理。
初中数学分钟试讲教案及反思篇十
1、体会并了解反比例函数的图象的意义。
2、能列表、描点、连线法画出反比例函数的图象。
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。
本节教学的重点是反比例函数的图象及图象的性质。
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点。
1、情境创设。
2、探索活动。
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的'点连接起来。
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x。
222(2)可以通过探索函数y?与y??之间的关系,画出y??
初中数学分钟试讲教案及反思篇十一
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:一a定是负数吗?答案是不一定。因为字母可以表示任意的数,若a表示正数时,是负数;当a表示0时,就在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
初中数学分钟试讲教案及反思篇十二
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
初中数学分钟试讲教案及反思篇十三
各位老师,大家好!今天我说课的题目是人教版七年级(上)第二章第二节《整式的加减》第1课时。
首先,我对本节教材进行一些分析:
一、教材分析:。
上启下的课。
二、教学目标:。
1、知识目标:。
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:。
并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
四、教学方法与教学手段:
(1)教法分析:。
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。(2)学法分析:。
应用意识和发散思维。
五、教学过程:
初中数学分钟试讲教案及反思篇十四
使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”
正方形的定义.。
双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:
(1)对角线相等的菱形是正方形吗?为什么?
(2)对角线互相垂直的矩形是正方形吗?为什么?
(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
(4)能说“四条边都相等的四边形是正方形”吗?为什么?
(5)说“四个角相等的四边形是正方形”,对吗?
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.。
问:所得的图形是矩形吗?它与一般的矩形有什么不同?
所得的图形是菱形吗?它与一般的菱形有什么不同?
所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.。
(一)新课。
请同学们推断出正方形具有哪些性质?
(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
初中数学分钟试讲教案及反思篇十五
通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。这里给大家分享一些关于初中数学试讲教案,方便大家学习。下面是小编精心为大家整理的关于初中数学试讲教案(优秀3篇),如果对您有一些参考与帮助,请分享给最好的朋友。
知识技能。
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考。
1、经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2、通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题。
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度。
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点。
建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点。
分析实际问题中的相等关系,列出方程。
教学过程。
活动一知识回顾。
解下列方程:
1、3x+1=4。
2、x-2=3。
3、2x+0.5x=-10。
4、3x-7x=2。
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)。
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究。
教师:出示问题(投影片)。
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)。
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)。
2、设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)。
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)。
5、列方程:3x+20=4x-25(1)。
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三解法运用。
例2解方程。
3x+7=32-2x。
教师:出示问题。
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四巩固提高。
1、第91页练习(1)(2)。
3、小明步行由a地去b地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求a、b两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1、学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3、用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五。
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题。
教学目标。
1、使学生正确理解的意义,掌握的三要素;
2、使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
3、使学生初步理解数形结合的思想方法。
教学重点和难点。
重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。
难点:正确理解有理数与上点的对应关系。
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——。
二、讲授新课。
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。
三、运用举例变式练习。
例1画一个,并在上画出表示下列各数的点:
例2指出上a,b,c,d,e各点分别表示什么数。
课堂练习。
示出来。
2、说出下面上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。
四、小结。
指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。
五、作业。
1、在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)a,h,d,e,o各点分别表示什么数?
2、在下面上,a,b,c,d各点分别表示什么数?
3、下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
一、课题。
27.3过三点的圆。
二、教学目标。
1、经历过一点、两点和不在同一直线上的三点作圆的过程。
2、。知道过不在同一条直线上的三个点画圆的方法。
3、了解三角形的外接圆和外心。
三、教学重点和难点。
重点:经历过一点、两点和不在同一直线上的三点作圆的过程。
难点:知道过不在同一条直线上的三个点画圆的方法。
四、教学手段。
现代课堂教学手段。
五、教学方法。
学生自己探索。
(一)、新授。
1、过已知一个点a画圆,并考虑这样的圆有多少个?
2、过已知两个点a、b画圆,并考虑这样的圆有多少个?
3、过已知三个点a、b、c画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑。
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个。
不在同一直线上的三个点确定一个圆。
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆。
让学生探索课本第15页习题1。
一起探究。
分析:带领学生完成课本第13页的表格,并完成2、3问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结。
七、练习设计。
p15习题2、3。
八、教学后记。
后备练习:
1、已知一个三角形的三边长分别是,则这个三角形的外接圆面积等于。
2、如图,有a,,c三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()。
a.在ac,bc两边高线的交点处。
b.在ac,bc两边中线的交点处。
c.在ac,bc两边垂直平分线的交点处。
d.在a,b两内角平分线的交点处。
来源:网络整理免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
content_2();。
初中数学分钟试讲教案及反思篇十六
教学内容:
苏教版国标本五年级上册《认识负数》第一课时。
教学目标:
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
教学过程:
一、创设情境,激趣引入。
(多媒体出示沈阳大雪时的一幅照片)。
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)。
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)。
二、借助经验,自主探究。
1、认识温度计。
小结:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)。
2、教学例1。
(1)教学正、负数读写法。
谈话:同学们,咱们中国幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一起来看一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)。
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)。
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流评价。)。
师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。
讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度;+20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)。
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示。
(板书):-9℃、27℃]。
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)。
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)。
(4)练一练。
(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?
黑海海拔高度是-28米。
马里亚纳海沟最深处的海拔是-11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)。
三、抽象概括,沟通联系。
1、揭示概念。
师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?
像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)。
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)。
0与负数比、0与正数比,大小有什么关系?(指名回答)。
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)。
2、你知道这些温度吗?读一读。(教科书练习一第五题)。
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)。
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)。
4、下面是小明的一则日记。
2007年7月18日晴。
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……。
这则日记中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
五、全课总结。
师:这节课我们一起认识了负数。你有哪些收获,给大家分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
总评:
课程标准提出:人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:
简约。紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。
贴切。数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,精心设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。
课始,老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。
充实。数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。
和谐。关注学生学习过程评价。老师注意给学生提供广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、“你能说说是怎样看出来的吗?”、“你能用自己喜欢的方式表示吗?”、“你有哪些收获,给大家分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅。
初中数学分钟试讲教案及反思篇十七
3、使学生初步理解数形结合的思想方法。
教学重点和难点。
重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。
难点:正确理解有理数与上点的对应关系。
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——。
二、讲授新课。
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。
三、运用举例变式练习。
例1画一个,并在上画出表示下列各数的点:
例2指出上a,b,c,d,e各点分别表示什么数。
课堂练习。
示出来。
2、说出下面上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。
四、小结。
指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。
五、作业。
1、在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)a,h,d,e,o各点分别表示什么数?
2、在下面上,a,b,c,d各点分别表示什么数?
3、下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
初中数学分钟试讲教案及反思篇十八
一、学生在问题情境中探索创新。
学生学习的过程,既是一个认知的过程,又是一个探索的过程。从某种意义上来说,也是发现和再创造的过程。但探索和创新活动无疑需要问题的参与。“疑是思之始,学之端”。由于探索总是与问题连接在一起,问题既是探索的起点,又是探索的动力。因此,教师要有意识地创设问题情境,以疑点激发学生的思维火花,从而引导学生在问题的导引下主动探究,获取知识,增长能力。
课堂教学是师生的双边活动,教师的“教”是为了引导学生的学,在教学过程中,教师要根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探索新知识,发现新规律,这是十分必要的。例如:我在讲“等差数列之和”时,课始,我让学生随意说出连续几个数相加时,看老师能不能算出得数,并让两名同学拿出计算器当场验证,结果正对。当同学们又高兴又惊奇时,老师说:“这不是老师的本领大,而是老师掌握了其中的规律,你们想不想知道其中的奥秘呢?”学生说:“想”。从而创设了展开教学的最佳情境。老师紧接着问:“你们发现连加的几个数有什么特点?”学生观察到都是相邻的发现它们之间的差是10学生的发现又有了一个新突破,学生在知识魅力的激发下,克服了一个又一个认知突破,主动投入到知识的发生、发展、形成的过程中,尝到了自己探索数学规律的乐趣。
二、让学生在操作活动中探索创新。
“思维从动作开始,儿童可以理解的首先是自己的动作”,通过操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动参与知识的形成过程。教师要创设一切条件,创设让学生参与操作活动的环境,多给学生活动的时间,多让学生动手操作,多给学生一点自由。如:我在讲全等三角形时,先让学生动手在本上画两个三角形,在画这两个三角形时,最少满足几个条件就可以使你所画的两个三角形全等。让学生在“画”中感知,在“画”中领悟,在“画”中发挥创造的潜力。
三、让学生在讨论交流中探索创新。
讨论学习是一种开放式的学习。在教学过程中,围绕某一知识进行广泛的讨论和交流,让学生畅所欲言,并通过学生相互合作,集思广益,逐渐完整地掌握某一知识。例如:我在讲“有理数分类”时,先出示了这样一组数1、―2、9、―1.1、―20、12.5、0分小组让学生给它们分类。
同学们在小组活动中热烈的讨论、进行归类,这样一步步引导学生观察、比较、讨论、归纳使学生掌握有理数的分类。可见,讨论是“互助自学”的体现,它能使学生在“互助”中乐意去探索、去发现、去学习知识,在“自学”中自觉去了解、去思考、去解决问题。
四、让学生在开放性练习中探索创新。
开放性练习是指解题思路不一,能引起学生发散思维的或条件不充分需要补充的一种练习。这样的练习需要学生通过思考找出一个或几个答案。开放性练习可以给学生提供更多的思考和探索空间,使学生在解题时探索问题情境中的数量关系,寻找数学模型,有助于学生综合能力的培养。在教学中,教师应针对教学内容联系学生的生活实际,设计一些开放性的题目,并且尽可能让练习丰富多彩,信息呈现多样化,答案不标准化,让不同层次的学生在开放性的练习中养成独立探索的学习习惯。大胆地去探索对于学生练习过程中新颖的想法,独到的见解,教师还应给予鼓励和表扬。
以上四点是我在课程改革中所体验到的几点不足经验,数学教学最重要的是让学生学会探究新知,发现规律,学生只有经过自己的探索,才能“知其然”并且“知其所以然”,学生才能真正获得知识,懂得公式的意义,掌握公式的应用,而且通过探求若干公式的应用,进一步提高学生的探索能力。
初中数学分钟试讲教案及反思篇十九
例如平行线判定主要内容是平行线判定公理及判定定理我做了尝试:引先导学生得出平行线判定公理然后让学生完成与判定公理相适应练习加予讲评学生在注意集中时接受了判定公理在练习中精神得到放松使已经产生疲劳通过练习得到消除为下面内容做好了准备再分析内错角在条件下满足判定公理得出判定定理内错角相等两直线平行并配合与之相适应练习最后小结学生在讲与练交替过程中显得精神饱满不仅能很快掌握知识要点还能正确地应用知识解题如此讲练结合能抓住教材重点把知识讲明讲透在此基础上加予练习就能避开听觉疲劳毛病又能当堂消化新课对新知识进一步巩固、理解有效地提高课堂教学质量。
将本文的word文档下载到电脑,方便收藏和打印。