六年级数学比例教案(优质18篇)
教案需要不断调整和完善,以适应学生的学习进度和教学实际情况。教师应当关注学生的学习差异,以个性化的方式进行教学设计。下面是一些优秀教案的案例,供大家学习参考。
六年级数学比例教案篇一
1.通过学习,初步了解比例尺的意义。
2.认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。
3.能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。
4.情感、态度、价值观:体会数学与日常生活的密切联系。
(1)理解比例尺的含义。
(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。
小黑板、课件、备一幅地图。
同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:
1.要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?
2.随便在纸上画一个长方形,这一定是教室的平面图吗?小组合作并完成汇报,在实物展示台上展示自己的作品。
教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。
揭示课题:今天我们一起来学习比例尺的知识。
1.学习比例尺的意义。
(1)动手操作。
请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。
学生们计算并汇报,集体订正。
一个教室长8米,宽7米,如果我们要画这个教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设计:
1、用几厘米表示8米和7米。
2、你设计的方案是图上距离比实际距离缩小了多少倍?
3、算一算、每幅图的图上距离与实际距离的比。
同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。
请学生重复说一遍什么叫做比例尺。
板书:图上距离:实际距离=比例尺。
请每个人算一算自己所画的教室的平面图的比例尺是多少。
(2)观察地图,自由交流。
引导学生充分发表意见,教师辅助讲解:
1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。
补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。
(4)学习例1。
板书:图上距离:实际距离。
=1cm:50km。
=1cm:cm。
=1:。
请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。
2.知识运用。
(1)即时训练。
学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。
集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。
(2)拓展训练。
课件出示下列四个问题:
1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。
2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)。
4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。
请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。
3.教学例2。
多媒图上距离15cm实际距离450km。
回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。
六年级数学比例教案篇二
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
能根据正比例的意义,判断两个相关联的量是不是成正比例。
一、课前预习。
预习书19~21页内容。
1、填好书中所有的表格。
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答。
二、展示与交流。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的`比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011。
爸爸的年龄/岁3233。
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
六年级数学比例教案篇三
学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)。
(二)探索两个变量之间的关系。
1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?
启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
路程。
根据学生的回答,教师板书关系式:时间=速度(一定)。
4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)。
反问:在什么条件下行驶的路程和时间呈正比例?
六年级数学比例教案篇四
2.使学生能正确判断正、反比例.。
教学重点。
正、反比例的联系和区别.。
教学难点。
能正确判断正、反比例.。
教学过程。
一、复习准备。
判断下面每题中两种量成正比例还是成反比例.。
1.单价一定,数量和总价.。
2.路程一定,速度和时间.。
3.正方形的边长和它的面积.。
4.时间一定,工效和工作总量.。
二、新授教学。
(一)出示课题。
六年级数学比例教案篇五
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
六年级数学比例教案篇六
担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。
六年级数学比例教案篇七
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
一、谈话导入。
1.出示苹果、梨、橘子的图片问:起一个总的名称是什么?
2.出示:仿照第一题填空。
(1)时间:3小时20分2小时45分。
(2)总价:5元()()。
(3)():6千克800克3吨350克。
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课。
(一)相关联的量。
教师做实验,向弹簧称上加钩码问:
(1)这其中有哪两种变化着的`量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
(二)学习成正比例的量。
1、出示19页表格。
观察图像,填表,回答下面的问题:
(1)表中有哪两个相关联的量?
(2)正方形的周长是怎样随着边长的变化而变化的?
(3)正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报。
2、20页第2题。
3、正比例的意义。
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)。
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本。
师板书关系式:y/x=k(一定)。
(2)那么,要判断两种量是否成正比例的量该看什么呢?
三、巩固提高:19页说一说。
四、全课小结。
六年级数学比例教案篇八
使学生理解的含义,会根据线段比例尺图上距离或实际距离。
根据线段比例尺求图和实际距离。
上节我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,除了数值比例尺外,还有线段比例尺呢?这就是我们这节课要学习的内容。
2、如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的.实际距离?让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米,再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?让学生说怎样列式。
50×5.5=275(千米)。
3、你能不能把这个地图上的线段比例尺改写成数值比例尺?怎么改写?
完成练习十五的第4~8题。
在地图上找出我们的家乡和北京,并计算出它们离多远。如果用50千米的线段比例尺,你能画出它们在图上的距离吗?同学们试一试。
六年级数学比例教案篇九
本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:
1.面向全体,重视学生对基本解题方法的理解。
在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。
2.拓展思维,重视学生对解题策略个性化和多样化的体验。
在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。
3.渗透思想,引导学生实现解题策略的优化。
在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。
六年级数学比例教案篇十
2.通过观察、比较、归纳,提高学生综合概括推理的能力.。
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
教学重点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学难点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学过程。
一、导入新课。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学。
(一)成正比例的量。
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)。
1
2
3
4
5
6
7
8
……。
路程(千米)。
90。
180。
270。
360。
450。
540。
630。
720。
……。
1.写出路程和时间的比并计算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)这个比值表示什么意义?
(4)360比5可以吗?为什么?
2.思考。
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度。
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。
3.小结:有什么规律?
教师板书:商不变。
(二)成反比例的量。
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。
工效(个)。
10。
20。
30。
40。
50。
60。
……。
时间(时)。
60。
30。
20。
15。
12。
10。
……。
2.教师提问。
(1)计算工效和时间的乘积.。
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。
3.小结:有什么规律?(板书:积不变)。
(三)不成比例的量。
1.出示表格。
运走的吨数。
10。
20。
30。
40。
剩下的吨数。
90。
80。
70。
60。
总吨数(和不变)。
100。
100。
100。
100。
2.教师提问。
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。
(四)结合三组题观察、讨论、总结变化规律.。
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化。
不同点:第一组商不变,第二组积不变,第三组和不变.。
总结:
3.分别概括。
4.强调第三组题中两种相关联的量叫做不成比例。
5.教师提问。
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式。
三、巩固练习。
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔。
总价(元)。
1。2。
2。4。
3。6。
4。8。
6
7。2。
支数。
1
2
3
4
5
6
单价(元)。
1
2
4
5
10。
支数。
100。
50。
25。
20。
10。
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比。
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽。
4.修一条路,已修的米数和剩下的米数.。
四、课堂总结。
五、课后作业。
(一)判断下面每题中的两种量是不是成正比例,并说明理由.。
1.苹果的单价一定,购买苹果的数量和总价.。
2.轮船行驶的速度一定,行驶的路程和时间.。
3.每小时织布米数一定,织布总米数和时间.。
4.长方形的宽一定,它的面积和长.。
(二)判断下面每题中的两种量是不是成反比例,并说明理由.。
1.煤的总量一定,每天的烧煤量和能够烧的天数.。
2.种子的总量一定,每公顷的播种量和播种的公顷数.。
3.李叔叔从家到工厂,骑自行车的速度和所需时间.。
4.华容做12道数学题,做完的题和没有做的题.。
六、板书设计。
六年级数学比例教案篇十一
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
从不同的角度理解比例尺的意义。
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
师:同学们,你们见过这个成语吗?(板书:以――当――)。
生:以一当十。(指名回答)。
师:那这样的话以三当几?以七当几?你是怎么算的?
生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)。
师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?
生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。
师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米。)。
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)。
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)。
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)。
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)。
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)。
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状,但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)。
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3)标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)。
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)。
让生自学课本第30页什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)。
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)。
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
(一)基本运用(小黑板出示)。
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是.
(1)图上宽与图上长的比是1∶2()。
(2)图上宽与实际宽的比1/400是()。
(3)图上面积与实际面积的比是1∶160000()。
(4)实际长与图上长的比是400∶1()。
(5)图上长与实际宽的比是1∶200()。
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸。
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
比例尺。
以一当十。
比
学生的图1:100或分数图上距离:实际距离=比例尺。
(贴)1:200或分数前项一般为1。
(强调比例尺的前项一般为1)。
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
六年级数学比例教案篇十二
1、完成第63页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。
第2题先让学生独立进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
六年级数学比例教案篇十三
教材复习第4~l0题。
1、使学生加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
2、使学生进一步掌握正、反比例应用题的解题思路和解题方法,提高解答正、反比例应用题的能力。
加深认识正比例关系和反比例关系的意义。
提高解答正、反比例应用题的能力。
一、揭示课题。
在“比例”这一单元里,除了认识了比例的意义和性质外,还学习了成正、反比例量的有关知识。这节课,我们复习正、反比例。(板书课题)通过复习,一要加深对成正比例关系和成反比例关系量的认识,提高两种相关联量成正比例还是反比例关系的判断能力;二要进一步认识正、反比例的应用题,加深理解正、反比例应用题的解题思路和方法,提高用比例知识解答应用题的能力。
二、复习正、反比例的意义。
1、做复习第4题。
让学生看第4题,思考各成什么比例。指名学生口答,说明理由。
2、整理正、反比例的意义。
3、做复习第5题。
小黑板出示,指名学生口答,并说明理由。说明:根据实际问题里相关联量所成的.正比例或反比例关系,可以用比例知识解答相应的应用题。
三、复习正、反比例应用题。
1、整理解题思路。
(1)做复习第6题。
让学生读题,思考各成什么比例的应用题。指名学生说明各是什么应用题,为什么。指名两人板演,其余学生做在练习本上。集体订正,让学生说明根据什么列式的。
(2)提问:解答正、反比例应用题要怎样想?在解题方法上有什么不同的地方?
2、综合练习。
(1)、做复习第8题。
让学生读题。提问:“药粉和水的比是1:500”你是怎样想的?(引导学生看出药粉和水的份数以及1:500表示比值一定等)这两道题成什么比例,为什么?让学生做在练习本上。指名学生口答等式,老师板书。再让学生说说怎样想的,根据什么列式的。追问:这道题还可以怎样做?(让学生思考按比的意义,应用分数知识或归一方法,口答算式)。
(2)、做复习第l0题。
要求学生思考有哪些方法解答第一个问题、指名一人板演,其余学生做在练习本上。要求列出不同解法的式子。集体订正,说说各是怎样想的。
四、课堂小结。
这节课复习了哪些内容?谁来说一说这节课你掌握了哪些知识或方法?
五、课堂作业。
复习第7.9题,第10题第二个问题。
六年级数学比例教案篇十四
1、使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
认识反比例关系的意义。
掌握成反比例量的变化规律及其特征。
一、铺垫孕伏:
1、正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2、下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
4、引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)。
二、自主探究:
1、教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050。
所需的天数3015107.5。
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论结果得出:
(1)、每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)、每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)、可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的'吨数和天数的积一定)。
2、教学例2。
出示例2。
3、概括反比例的意义。
(1)、综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)、概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4、具体认识。
(2)、提问:看两种相关联的量成不成反比例,关键要看什么?
(3)、判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
六年级数学比例教案篇十五
本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:
1.有效利用教材图表,增强对相关联的量的形象感受。
教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。
2.科学调动多种感官,增强对知识形成过程的体验。
在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。
3.体会数学与生活的密切联系,关注对正比例意义的理解。
因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。
六年级数学比例教案篇十六
在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)。
六年级数学比例教案篇十七
1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
六年级数学比例教案篇十八
教科书第63页的例2,“练一练”和练习十三的第4、5题。
1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的'习惯。
能认识正比例关系的图像。
利用正比例关系的图像解决实际问题。
多媒体。
一、复习激趣。
1、判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价。
和一定,一个加数和另一个加数。
比值一定,比的前项和后项。
二、探究新知。
1、出示例1的表格。
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
三、巩固延伸。
1、完成练一练。
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题。
先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。
3、练习十三第5题。
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流。
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
四、反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
五、作业。
完成《练习与测试》相关作业。
板书设计。