数学文化与数学史论文(通用17篇)
对于这个问题,我们需要采取一种全新的角度进行思考。如何提高写作水平是许多人关注的话题,下面给出几点建议供参考。收集总结范文可以帮助我们了解不同类型和风格的总结,从而更好地进行写作。
数学文化与数学史论文篇一
(一)数学史有助于国际主义教育。
(二)数学史有助于爱国教育。
(三)数学史有助于建立辩证唯物主义的世界观。
(四)数学史展现了数学家为真理而献身的高尚情操与伟大人格。
五、总结。
【参考文献】。
[1]张小明.中学数学教学中融入数学史的行动研究[d].上海:华东师范大学,.。
[2]宋乃庆,徐斌艳.数学课程导论[m].北京:北京师范大学出版社,.。
[3]教育部.义务教育数学课程标准(版)[m].北京:北京师范大学出版社,.。
[5]王青建,陈洪鹏.《数学课程标准》中的数学史及数学文化[j].大连教育学院学报,(4):40-42.
数学文化与数学史论文篇二
在数学的教学中也会将美国本土的数学家的研究内容融入到专科数学的教学中,没讲到一个数学问题都会将涉及到这个知识点的相关的数学家的研究历史详细的告诉学生,使学生们更能了解到数学的发展是如何一步步发展到今天这个样,但无论怎么发展数学的历史永远是当今每个学生都要必须学习的地方,这样的教学中更好的将数学史融入到数学的教学中,不仅在教学中讲解本土的数学家还会将到不同国度的数学家但对数学的贡献。因此在美国可以更好的将数学史融入到数学教学中。
2日本是如何将数学史与专科数学教学整合在一起。
日本是和我国比邻的国家,日本的数学教学中如何使用数学史也是有一定的方法。日本的数学学习,重视基础知识的理解,重视能力、态度和数学的思想方法的培养,并强调“使学生体会到数学学习活动的乐趣”,突出了对情感体验和学习兴趣的重视。无论是小学数学还是中学数学的教学,以及到专科数学的教学中都会将基础知识作为学习的重点,因此在教学中涉及到不同的教学的理念。如:“高明的计算”、“古人乘法的窍门”、“秀吉令人惊奇的故事”、“测量的技巧”、“离不开数学的人们”、“电子计算机的诞生”。它们旨在帮助学生理解数量和图形的有关概念在人类活动中的发展过程,提高学生对数学的兴趣、关心和学习的欲望,给学生以学习数学的动力。因此日本能很好的将数学教学和数学史进行有效的整合,将学生的兴趣作为数学教学的基本,然后通过数学史的内容和数学教学融合在一起,就会激发学生们的学习积极性,这些教学理念和中国的教学有几分相似之处。
3德国是如何将数学史与专科数学教学整合在一起。
德国是一个欧洲国家,发达的经济背后更注重学生的学习,对于数学的教学中更关注他的实践作用,在教学中涉及到的内容也会和数学史联合起来。没有数学的发展历史就不会当前发达的数学,因此在数学的教学涉及到的数学史的内容也很多,在数学的教材中有100多处涉及到数学史,将数学史编到数学的教材中,而不是单独列出数学史作为一个单独的科目,而是有机的将数学史融合到数学的教学中,这样不仅可以让数学教师更容易的将数学教学和数学史联合在一起而且更能将这两者教学很好的告诉学生。德国这种教学方式更能使学生们接受并达到更好的学习效果。如在自然数表达一节就介绍了数表达的历史特别是罗马数系;在韦达定理的应用一节就介绍了数学家韦达。而在大数定律一节则介绍了数学家雅各布伯努利。这些教程中的内容不仅可以给数学教师指出一条更好的教学之路,还能将数学的教学有效的教给学生,学生学到的知识就会更明确。
4其他国家是如何将数学史与专科数学教学整合在一起。
其他国家中对数学的教学和数学史的整合的现状,不同国家得到的结果也不尽相同。欧洲国家中除了德国还有法国,法国指出了数学史要和专科数学教学中的各项内容要一一结合,只要有数学内容就应该涉及到数学史,将数学史有机的融合到数学的教学的每一个章节。欧洲国家中另一个国家英国,英国要求学生们要知道数学史,并对涉及到数学教学中的数学史要详细的.研读如数学家的名字以及他们的业绩和生平。并作为考试内容重点来考察,这样的教学要求可以激起学生们的独立学习的能力,更能将数学史整合到数学的教学中。其他国家还有俄罗斯,作为中国相邻的国家,俄罗斯的数学教学中也涉及到数学史,主要还是将数学史作为一门单独的课程,在教学中涉及的内容也不多,主要还是学生们的自学,对数学史和数学教学的整合存在一定的差距。不同的国家对数学教学的重视程度不同在数学史与数学教学中的整合也存在一定的差距,无论怎么样的发展,数学史作为一个学科也越来越多的受到教师的重视,在整合的路上还有一段路要走。
5结语。
新课改的不断进行,也为我国的教学提出了一些实际的问题,如何做好新课改下的数学教学,这也是每个教学必须要研究好思考的问题,对不同国家中数学史与专科数学教学的整合现状,我们看到的还是不足之处,借鉴不同国家的经验,应用到我国的数学教学中可以更好的教学,还可以看到我们的不足,取长补短,发挥各自的优势。对我国的数学史的了解,以及其他国家的数学史也要了解,数学不仅涉及到本土的内容,还会涉及到不同国家杰出的数学家的贡献,知识是可以共荣,我国的数学教学重要也要多引用其他国家著名的数学家的研究内容用于我国的专科数学教学中,这也是新课改的言外之意,充分的利用各国先进的教学,将数学史融合到专科数学的教学中,充分发挥各自的优势为我国的数学教学做出贡献。数学史与专科数学教学的整合的问题还在不断的进行着,克服当前存在的问题,寻求解决的办法,还是需要一段路要走。
数学文化与数学史论文篇三
摘要:像其它院校教学一样,在职业技术院校的数学教育中,数学史不仅发挥着不可磨灭的作用,而且能够有效的开发学生的数学思维能力,让学生懂得掌握数学的思想。因此,文章就数学史的教育价值进行了一定程度的分析,以便进一步发挥数学史的教育价值。
只有真正读懂历史、懂得历史的人,才能够对于数学进行进一步的理解。法国著名的数学家亨利庞加莱曾经说过这样一句话:“如果我们想要对数学的未来进行预测,我们首先就需要了解到数学这一门学科的历史以及现状。”随着最近几年职业技术院校的教育改革来看,已经将数学的文化价值推到了台前,也就使得人们对于数学史的关注越来越多。
数学史作为一门科学,研究了数学科学的发展以及规律,换句话说,就是对于数学研究的历史。数学史不仅仅是对数学内容、思想、方法的一种追溯,更多的是对于影响数学发展的各种因素的探索,也包含了在人类文明的发展上,数学史所带来的影响。所以,数学史不仅仅只是包含了数学本身,更多的是包含了文化、历史、哲学等众多的学科,属于一门交叉性较强的学科。
二、数学史在职业技术学校开展的必要性。
在职业技术学院这一大环境之下,很多教师对于数学这一门课程都没有足够的重视,就谈不上数学史的教学了。因为,很多教师和学生都认为职业技术学院的学生就是为了学习专业的技术而来的,对于一些纯理论的东西是可有可无的。因此,在数学系当中,对于数学史的学习就没有引起足够的重视,而数学史知识的严重缺乏也就成为了学生在之后数学教育或者是科研方面的一大阻碍。因此,无论是否是职业技术学校,我们都需要从心里认识到数学史教育的必要性,要了解数学史的教育价值,从而在日常的教学当中,将数学史当做一门重点来抓,从而弥补以往在数学史这一方面的不足。
三、在职业技术教育当中,数学史的价值。
在目前的职业技术院校的教育当中,已经越来越多的融入了数学史的教育,而对于数学教育,数学史的主要作用存在以下几点:
(一)有利于帮助学生理解数学。
当数学家发现数学的时候,其思考是火热的,但是一旦研究结束了,我们面前呈现出来的则是“冰冷”的公式。所以,通过我们对于数学史的了解以及说明,我们就能够了解到在数学的研究当中,数学家是如何思考的、进行的。
例如:为什么古希腊人在开展数学的时候,要使用公理化的方法进行开展?古希腊人所处的是何种时代背景。而古希腊数学与中国的古代教育又存在如何的区别?弄明白了这些情况,对于学生在数学方面的理解能力的提高也有着一定的作用。而对数学老师而言,想要上好数学课,就需要自身具备良好的数学修养。
(二)有利于数学宏观认识的提高。
作为一名专业的数学老师,并非是将书本上的知识传授给学生就完事了,更多的是需要为学生讲解数学发展的历史。作为一名优秀的数学教师,不仅需要授人以业,更多的是需要授人以法,从而做到受人以道。而在这里所说的“法”与“道”就要求了教师能够从宏观方面对于数学发展的情况能够理顺,能够深入到数学的本质当中去。数学史对于创新数学教育来说,起到了引导的作用。在数学史当中详细的对数学家在发现与发明的过程进行了及摘,数学老师对学生进行讲述后,也能够培养学生的'创造力,让学生懂得如何去创造。
例如:在公元263年,在我国古籍《九章算术》的注释当中,刘微对于在圆周长计算当中的“割圆”思想提出了计算,而他在论述当中所说的:“割之弥细,所失弥少,以至于不可割,则与圆周合体,而无所失!”就成为了一种创新的激励,激励着学生的学习。
(三)促进学生培养良好的科学品质、正确的世界观。
在接受职业技术教育的学生当中,大部分都是因为学生上的受过挫折的。尤其是在当今社会下注重分数轻视能力的大背景下,很多学生在思想上认为自己无法和考上了名牌大学的学生相比较,从而失去了自信心,给自己带上了“差生”的帽子。而这一种消极的状态则在学生日常的方方面面表现了出来。因此,他们在课堂之上除了掌握基本的知识点之外,更重要的是培养良好的人文素养。
数学史为数学教育德育功能的实现提供了一定的帮助。进行数学史教学能够提升学生对于数学学习的兴趣,也能够达到活跃数学课堂氛围的效果,从而有利于教学效率的提高。对于我国现代数学家的伟大贡献的讲述,能够起到一定的激励作用。而丰富的数学史料的融入能够培养出学生正确的价值观、情感以及态度。展示在数学领域当中古今中外的数学家的崇高精神以及伟大的人格对于学生培育学科精神、完善道德都起到了不可磨灭的作用。此外,在史料当中,对于数学家所犯的“低级”措施的恰当引出,对于学生正确的、理性的看待学习当中的失败,形成良好的科学品行也起到了至关重要的作用。
(四)数学史为之后的科研事业打下了坚实的基础。
对于学生以后的数学研究工作来说,数学史是良好的方法论基础。“科学能够带给我们丰富的知识,但是历史却能够让我们拥有智慧。”现阶段的职业技术学生的学生也不可能从而很多的数学科研工作。但是,数学史对于以后志向在数学方面的学生,仍然起到了重要的作用。
数学史能够提升学生的科研意识的培养。通过数学史的学习,学生能够清楚的了解到数学问题的提出、解决以及哪些问题一直困扰着大家。数学史也能够为了学生之后的科研方向提供一定的基础。目前来说,数学的各个分支发展是极为不平衡的。很多分支虽然起步相对较晚,但是依然存在较大的进步控制,而这就成为了数学工作者一展才华的天堂。虽然,目前的职业技术学校的学生对于各个数学分支的认识相对有限,并且这一种有限的认识会影响到学生以后的选择。但是数学史的融入,不但可以帮助学生理顺数学的发展,还能够为他们之后的发展提供专业性的意见。因此,数学史的教育价值显而易见。
总之,在职业技术教育当中,想要将数学史的价值发挥出来,还需要两者的相互整合,有赖于所有的教学工作者的探讨与摸索,也希望本文中对于数学史的教育价值的分析与阐述能够为之后的工作尽一份微薄之力。
参考文献:。
[1]张国定.全面认识新课程下数学史的教育价值[j].教学与管理,,(25)。
[2]岳荣华.发掘数学史在数学教学中的教育功能[j].衡水学院学报,,(01)。
数学文化与数学史论文篇四
总之,在职业技术教育当中,想要将数学史的价值发挥出来,还需要两者的相互整合,有赖于所有的教学工作者的探讨与摸索,也希望本文中对于数学史的教育价值的分析与阐述能够为之后的工作尽一份微薄之力。
参考文献:。
[1]张国定.全面认识新课程下数学史的教育价值[j].教学与管理,2010,(25)。
[2]岳荣华.发掘数学史在数学教学中的教育功能[j].衡水学院学报,,(01)。
数学文化与数学史论文篇五
长期以来,数学学科在教学过程中的“缺人”现象一直存在.所谓的“缺人”现象就是对人文素养的缺失与忽视.而实际上,教学过程中适当的融入数学史的做法便是很好的人文渗透.以人文渗透的方式丰富数学学习的内容与形式,可以让学生喜欢数学、会学数学、进而学好数学.从数学史的内容分布来看,在数学教育中渗透数学史的元素可以从以下几个方面人手.
一、数学史之数学概念的发生、发展过程。
数学概念是数学中最基本的元素之一,对数学概念的历史挖掘可以更好的让学生对概念的本质产生直观印象,从源头帮助学生学好知识,学透知识.
正数与负数的历史发展。
正数与负数的产生是人类思维进化的大飞跃.在原始时期,人们没有数的概念,在计数的时候往往使用手指计数,当手指数量不够用的时候,人们就会借助结绳、棍棒、石子的方式计数.随着社会的发展,尤其是经济的发展.对计数的要求就逐渐变高,于是就有了自然数的概念,分数的产生.而在生活中则有了比0度还低的温度……这些情景的出现就要求人类开始考虑数字的正反,多少两个层面的含义,于是就诞生了负数的概念.这种正负数产生的过程就可以让学生真切的感知负数诞生的历史背景和社会生态,有利于学生将正负数的知识迁移运用到生活当中.
二、数学史之定理的发现与证明过程。
传统课堂中对定理的证明和介绍往往是将证明过程进行展示,学生对定理的来历和证明过程的原始记载并无掌握,不能很好的形成对所学知识的深刻印象.将定理证明的来源及其在不同国家的历史发展介绍给学生将有助于深化对定理的理解,学习伟大数学家对待证明的方法,并感悟数学思想的魅力.
勾股定理的证明。
在中国,勾股定理的证明最早可以追溯到40前.在《周髀算经》的开头就有关于勾股定理的相关内容;而在西方有文字记载的最早给出勾股定理证明的则是毕达哥拉斯.相传是毕达哥拉斯在朋友家做客时,无意中看到朋友家地板的形状,于是便在大脑中出现了一系列的假设和猜想,并随后给予了论证.当毕达哥拉斯证明了勾股定理以后,欣喜若狂,于是杀牛百头以示祝贺.现在,数学家已经从不同的角度对勾股定理进行了证明,证明方法多达几十种.
三、数学史之数学历史中较为有名的难题解析。
在数学的发展史中,有一些流传下来的被后人津津乐道的数学难题,这些题目的解答中往往蕴含着丰富的数学解题思想和独特的思维方式,同时也可以让学生感受到数学问题的`奥秘并从中获得启示.
哥尼斯堡七桥问题。
在18世纪的时候,有一个小城角哥尼斯堡,城中有一条河,河上坐落着七座桥,这七座桥将河中间的两个小岛与岸边相连.在那里生活的居民就提出了一个问题,如何在既不重复,也不落下的情况下走遍七座桥,并在最后回到出发点?这个问题困扰了大家很久,但始终都没有得到解决.直到一位名叫欧拉的数学家通过将问题简化和抽象最终得出了问题的解决办法.这就是后人常提到的“一笔画”问题.
四、数学史之数学家的故事。
数学家的故事往往蕴含了丰富的人生哲理,不仅教会学生如何对待工作,对待生活,对待工作中的每个细节,还在侧面影响了学生从事数学工作的意愿.教师可以在教学之余穿插介绍一些中外数学家的故事,重点介绍其对待数学事业的态度以及在工作上优良的品质,以鼓励所有学生在数学学习过程中不断的学习数学家的品质与风貌.
高斯的故事。
高斯十岁上学时老师给所有同学出了个题目:将1-100的数字全部写出来并把它们相加.老师原本想让孩子们多算一会儿好让自己休息,其他很多同学也开始用石板逐一计算.但是高斯却很快就将答案摆在了老师的面前.老师自然对高斯的表现异常吃惊,尤其是高斯的答案是正确的.而当高斯解释解题过程的时候,连老师都没有想到将数字串进行首尾相加的方法却从一个十岁儿童的笔下得出.这不得不让人对这个孩子的聪颖大加赞赏和敬佩.
五、数学史之中国古代的数学成就。
中国自古以来就有很多闻名于世的数学成就,这些数学成就不仅为后世所利用,同时也在很大程度上提升了中国在数学领域的地位.将中国古代的数学成就介绍给学生可以帮助学生了解中国古代或近现代的数学发展史,同时也可以增强学生的爰国主义情怀,提升学生投身于祖国数学事业的决心和毅力.
中国古代主要的数学成就。
中国的数学起源于本土,并在独立发展的同时形成了自身的风格.古代有三个中国数学发展的巅峰时期,分别是两汉时期、魏晋南北朝时期以及宋元时期.两汉时期有著名的《九章算术》和《周髀算经》,到了魏晋南北朝时期则在这两本著作的基础上产生了其他的注释和推导.最有名的莫过于刘辉“圆周率”的得出、此外例如《夏侯阳算经》等数学著作也相继诞生;宋元时期的中国数学则达到了顶峰,李冶等一大批中国著名的数学家的诞生为当时中国的数学事业贡献了大批成果.如“解高次方程的数值”、“杨辉三角”等.
除此之外,对于数学史中的一些重要成就在现当代的应用等都是可以用来传授的材料,教师要在材料的甄选和表达方式上多下工夫,让学生更好的领会到数学中蕴藏的人文价值和美学价值,以加强自我提升意识和爰国情怀.
数学文化与数学史论文篇六
摘要:小学数学课堂教学以学生掌握更多数学知识、实现小学数学有效教学为终极目标。而在小学数学教学的过程中,适当将数学史融入其中,不仅能够丰富教学内容,健全学生数学知识体系,还能培养学生树立正确的数学观,激发学生学习兴趣,为实现小学数学教学目标提供有利条件。本文谈谈如何将数学史适当融入小学数学课堂教学。
关键词:小学数学;数学史;课堂教学;小学生。
数学作为一门自然学科,抽象性较强,如果教师在教学过程中存在教学方法不得当、综合素质较低等问题,就会导致小学生对数学产生畏难心理,失去学习数学的兴趣和信心。针对目前我国大部分小学数学课堂教学存在的问题,将数学史适当融入小学数学课堂教学就显得尤为必要,这不仅是学生学习知识的需要,更是现代数学教育发展的必然趋势。
一、提升数学教师综合素质。
数学教师综合素质的高低直接影响学生掌握数学知识的程度。由于长期受我国应试教育的影响,很多数学教师只注重自身数学解题技能水平的提升以及向学生传授数学解题方法;但在目前小学数学知识更新速度日新月异的情况下,教师的综合素质就会显得力不从心,尤其数学史方面的知识更是知之甚少。甚至有的数学老师始终认为即便是掌握丰富的数学史知识,在考试时数学史也不会作为考试内容,还不如把学习数学史的时间腾出来向学生多讲授几道练习题更实际。这样导致学生只知道机械解题,长期如此,学生就会对这种枯燥无味的教学方法产生厌烦心理,进而导致小学数学课堂教学效率的下降。鉴于此,数学教师应在提升数学专业技能水平的同时,转变自身观念,努力加强数学史的学习,熟知数学教学主题内容后面的数学故事,并将其适当融入小学数学课堂教学,让小学生认识到我国数学知识的博大精深。
传统教学方法中,往往教师一到课堂,就让学生打开课本,告诉学生今天所要学习的内容,接着在黑板上写出本节课所讲内容,直至讲课结束。很多学生对这种教学方法早已司空见惯,了然于胸,因为太过熟悉,已经无法提起任何兴趣,在老师讲解知识的过程中自然不能全神贯注,走神、开小差的现象在所难免。小学生对任何新鲜事物都充满好奇,以数学史作为教学背景,可以使小学生耳目一新。教师可以在讲授内容之前,以与讲解内容相关的古代数学家的故事为引题开展教学活动,可以使学生放松对传统教学的戒备心理,定会集中精神认真听讲。然后教师自然引出教学主题并进行讲解。在课堂教学的过程中,小学生的注意力并不能持久,只有通过教师的引导,其思维才能始终跟上教师的教学进度。而笔者对我国数学史梳理后发现,小学数学每个教学主题背后都有可追溯的历史渊源,而这些背后的故事就是教师可以利用的数学史题材,可通过例题练习、解题技巧、讲解数学史,交替进行,合理引用。这样不但能促使学生学习数学知识,还能有效提高小学数学课堂教学水平。
首先,要明确数学史与数学知识同等重要。小学数学教学应结合教材内容来开展,又要根据学生的不同年龄特点增加数学史的内容。此外,数学史内容的呈现方式应该是多种多样的,除目前已有的形式外,还应结合学生的心理年龄特征、知识接受水平对数学史内容加以选择、编排,譬如连环画、卡通画等形式;也可将数学游戏、数学谜题等作为数学史内容。这样更易激发学生的学习热情,为学生的终身学习提供一个良好的开端。在编排方式上,选择学生最需了解的主题,并以此为基本原则,在各个学段以不同方式系统连贯地加以呈现。只有这样,数学史的教育价值才能得到充分发挥。
四、结论。
数学史在我国小学数学课堂教学中的适当融入,可以让学生全面了解我国的数学发展史,并在丰富数学课堂教学、激发学生学习兴趣、提升教学有效性等方面产生十分重要的作用,轻视不得。同时教师要从学生的实际情况出发,多角度、多层次地将数学史融入教学,拓宽学生视野,最终为达到小学数学教学目标创造更多的有利条件。
参考文献:
[1]聂卫兰.浅谈如何在小学数学中渗透数学史[j].情感读本,,(14).
[2]陶博慧.数学史对小学数学课堂教学效率的影响研究[j].新课程学习(上),2015,(1).
数学文化与数学史论文篇七
读完《这才是好读的数学史》之后,我最想表达的就是对数学悠长的历史的感叹,这本书让我了解到从3.7万年前到现在21世纪的数学的发展与进步,也明白了数学在生活中的重要性。
下面我将介绍几点我印象最深刻的内容:
在书中第一章:开端中介绍了四大文明古国的数学文化,包括当时的人们用什么材质的东西来记录数学,用数学干什么以及保存情况如何。在这一章讲述古巴比伦的数学是写了他们数学中几个特征,包括以60的幂表示数字,所以接近4000年后的今天为什么仍然把一小时分成60分,把一分钟分成60秒。在这一章中也讲了我国古代的数学文化,在书中介绍了《算经十书》《九章算术》等中国古代的数学经典,由于种种原因导致当时的数学文化的损失,但作者实事求是,没有写一些没有历史根据的东西,再一次让我感受到这本书的严谨。
书中是按国家的顺序进行安排的,因为如果按时间顺序安排的话,很容易弄混淆,作者按照时间线上在某个时间点上最重要的事情的国家来安排,体现了本书“好读”的特点。
在书中有一个细节让我注意,每一章最后都会有一段来推荐一些关于本章内容更详细的讲解的书目,甚至详细到了具体在哪一章,在书的最后把对应的书名写了出来(虽然是英语的,我看不懂)从中可以看到作者对待数学的严谨和细致。
我非常喜欢在书中的一句话“学习数学就像认识一个人一样,你对他(她)的过去了解的越多,你现在和将来就能越理解他(她),并与其互动。”这句话感觉就像说中了我的感受,我认为阅读完之后,自己不仅会对数学更有兴趣,而且在以后学习数学的时候更加认真对待。
数学文化与数学史论文篇八
数学作为一门自然科学,从广义上来讲,是对现实世界中存在的数量关系和空间形式进行研究的一门学科。而数学文化,则是从数学这门科学中引申出来的一个重要分支,关于它的定义,至今还没有形成一个统一的说法,一般来讲,我们所指的数学文化,就是对数学发展过程中形成的思想、方法或观点进行整合的一种数学语言[1]。由于数学学科本身具有的逻辑思维特点,数学文化的严谨性也比较强,具体表现在语言、符号等方面。因此,在具体的数学文化渗透教学中,不仅要将教材中涉及的知识进行充分的展示,还应该以此为基础向外扩展,将数学文化教育与社会发展的需要联系起来,充分体现高中数学文化的人文价值和教化功能。
数学文化与数学史论文篇九
3.1还原数学文化背景,激发学生学习热情。在具体的数学教学中,教师主要就是一个传播数学概念、方法和思想的载体,而学生的任务则是对这些知识进行最大限度的吸收和消化。从最初的源头来看,不管是数学的概念、思想还是数学运用的方式都是在特定的背景下自然形成的,它形成的起因、过程及其最后的应用等都是在客观发展的规律的作用下进行的,在这个进程中,它们表现出浓烈的人文特色[3]。那么,教师在数学课堂中,就可以以此来作为数学文化的素材,还原当时的文化背景,让学生在特定的情境中去感受数学文化,增加数学学习的文化特征,进而更好地促进课堂教学的效率。例如,在新课标的要求下,如今的数学教材在每章节的首页都有一些与实际生活相联系的插图,在教材的附录或标注中对相关的数学发展史和数学家都作了简明扼要的介绍,那么教师在教学的过程中,就可以以此为文化渗透的契机,尽量去还原数学知识的文化背景,向学生灌输相关的数学文化知识,然后在此基础上,科学导入数学的相关概念或公式,循序渐进地开展教学活动。比如,在学习勾股定理时,教师可以先通过介绍该理论产生的时代背景、发展进程及其发现者的相关事迹等,营造一个良好的文化氛围,先把学生的学习好奇心和学习热情激发起来,再适时推导出“直角三角形的两条直角边的平方和等于斜边的平方”这个定理。
3.2创新解题思路,体验和感悟数学文化。在新课标的影响下,解题不应该成为学生学习的唯一目标,而更应该看中学生综合素质的培养与发展。从当前的高中数学教学情况来看,的确更加注重解题思路方法的教导,而忽视了其他数学内容的渗透与传播。当然,在当期的时代背景下,把解题作为主要的教学内容固然没错,但如果因此把解题作为高中数学学习的全部,那就大错特错了,数学解题的过程同时也是传播思想文化和数学方法规律的过程[4]。从数学文化渗透的角度来说,数学解题集策略、逻辑、推理、技巧等于一体,并且隐藏着数学家们的探究足迹以及思维方式,它超越了数学解题本身,而上升到了一个文化层面的高度。因此,在具体的高中数学教学中,教师要学会创新解题教学的新思路,引导学生去体验和感悟数学文化。例如,在运用定理解题的方法教学中,教师可以根据实际的情况来进行适时的引导,让学生循着数学家探索的轨迹去理解和掌握数学知识。如在空间距离、空间角度等概念的教学中,教师可以通过教学模型或多媒体设备来辅助教学,向学生说明数学家创造理论的过程或方式,创设真实的教学情境来加深学生的理解。还可以向学生介绍古人在当时的环境下对数学知识的运用,比如用日晷针影长的变化来确定时间,根据太阳的高度来制定节气,用物体的影子长短来进行实物测量等,使学生在科学知识之外学习到相关的文化知识,促进解题思路的扩展,加强对数学文化的感悟。
3.3加强与其他学科文化联系,为数学课堂添彩。高中教师在高中数学的教学过程中,也要在基础性知识教学的基础上,从文化的角度综合考虑数学学科与其他学科之间的联系,将其他学科的知识渗透到数学文化的教学当中,为数学课堂增添新的升级与活力。另外,在具体的数学文化与其他学科知识的沟通教学设计上,不应该只停留在粗浅的应用层面,而应该深入到思维、思想领域,找到数学在自然科学与人文科学之间的纽带特征,进而归纳出数学学科的文化性质并运用于教学实践当中,加强数学文化的渗透。例如,例如在语文学科的古诗词中就蕴藏着丰富的数学知识,王维《使至塞上》中写到:“大漠孤烟直,长河落日圆。”这首诗通过很多意象组合向我们展现了一幅雄浑、壮阔且大气的大漠落日图,而从数学的角度看,这其中涉及了丰富的几何知识,从整体看,可以把“大漠”看成一个平面,平面,而向上直走的“孤烟”则可以看做是垂直于平面的一条直线,不远处流淌着的长河则可以视为跟平面平行或相交的另一条直线,天边挂着的落日则是一个大圆,那么,“长河落日圆”就可以看作是圆与直线的关系,即相切或相离或相交,由此形成了数学知识与语文知识的融合,即向学生灌输了相关的数学概念,也从另一个层面上推动了数学文化与其他学科文化的渗透[5]。
数学文化与数学史论文篇十
读完《数学史》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。
通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
数学的历史源远流长。我了解到,在早期的人类社会中,()是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如涵数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
人们为什么长久以来称数学为“科学的女皇”呢?也许是女皇让人无法亲近的神秘感和让人们向往和陶醉的面容,让人情不自禁地联想起数学吧!
数学文化与数学史论文篇十一
“结构分析法”在解题中的运用。
这里的“结构”仅指字、词、句的结构,不指篇章结构。笔者以为,理解语意、辨析语病等,都可以采用“结构分析法”。下面,就通过一些例子,来谈谈这一种解题技巧的运用。
一、分析字的结构。
1、可以帮助理解词义。
汉字是表意文字,字形和字义有着直接联系。虽然时代久远,汉字的形体和语素意义已发生很大变化,但是,许多象形字、指事字和会意字的表意性都还比较明显。同时,汉字中的绝大多数是形声字,形声字半旁表音,半旁表意,其“义符”更为我们理解词义提供了有利的条件。比如,“水”()旁的字,大多与水或跟水有联系的事物有关;“”旁的字,大多与病痛有关。又如“他们进行了适度的深耕,撒下肥料,努力使土地变得膏腴起来”(《土地》)中的“膏腴”,都是“月”(肉)旁,与身体(脂肪)有关,再联系语境,可推知“膏腴”意思是肥沃。
在文言文中,分析字形结构,有助于理解文言词语的意义。如“君径造袁所寓之法华寺”(《谭嗣同》)一句中的“造”,义符为“”,再联系下文“袁所之法华寺”,不难推测与处所关联的词义应是“到”、“去”的意思。“造”的其他意义“制造”、“成就”显然在这里与文意不符。
2、可以帮助辨析别字。
比如全国高考卷字形题,考查过“贪赃枉法”、“脱颖而出”等成语。在试题上,这两个成语中的“赃”和“颖”分别写成了“脏”和“颍”。分析一下它们的字形结构,就不难看出“脏”和“颍”在这里是别字。脏,从“月”(肉),指身体内部器官。赃,从“贝”,古文中的“贝”指贝壳,古代曾用贝壳作货币,所以,用“贝”作形旁的字,本义一般与财物有关。“贪赃枉法”的意思是贪污受贿、违反法纪,因此得写成“赃”,不能写成“脏”。颍,从“水”,指颍河。颖,从“禾”,指禾穗的芒尖。“脱颖而出”本指禾穗的芒尖透过布囊显露出来,后比喻人的才能全部得到了显示,所以只能写作“颖”。
二、分析词的结构。
1、可以帮助理解词义。
从词的构成方式,现代汉语用同义、近义语素或反义、对义语素构成的联合式双音节合成词和联合式成语很多。对这类词语,可根据前后位置关系,推知相对应的`字词的词义。例如“不学无术”,这是个联合式成语。“不”与“无”相对,同义;“学”与“术”相对,义亦同。“术”解释为技术、智术,是名词;那么,“学”也应是名词,可理解为学识、学问,而不能理解为动词“学习”。
2、可以帮助辨析别字。
三、分析句的结构。
1、可以帮助理解词义。
有些词语的理解,需要通过句子结构的分析。如1995年全国高考卷第20题:
[1][2][3]。
数学文化与数学史论文篇十二
16世纪到17世纪,可以说是一个数学史路上一个里程碑,在16世纪早期,学者们创造了代数,他们被称为“未知数计算家”,在那个时期,代数占据了数学史的中心位置,而到了16世纪末17世纪初,人类开始了新的探索,代数与几何共存,以此来研究天文,工程,航海,甚至是政治上的一些问题:开勒普用希腊圆锥描述太阳系,托马斯・哈里奥特则发展代数,笛卡尔把代数和几何结合,从而开始理解彗星,光等现象,这一时期,可以说是各种数学成就在此出生,但最出名的,还是微积分,当时人们无法用数字表现出天体的运动,无法表现一些抽象的物体,于是牛顿与莱布尼茨发明了微积分,但微积分始终还是较为抽象,不就后,当时最著名的数学家――欧拉也做出了一系列成就:三角形中的几何学,多面体的基本定理,有趣的是,欧拉甚至将数应用于船舶,中彩票或是过桥,欧拉将自己生活的方方面面都往数学上想,在他的世界中,数学无处不在。
我们不难看出这些数学家的发明的确大大改变了人们的生活,他们掌握了探索世界的钥匙――数学,将数学应用到方方面面,我们现代生活不也是如此,处处是数学,但最重要的是,我们热爱数学。
数学文化与数学史论文篇十三
《九年义务教育数学课程标准(实验稿)》和《普通高中数学课程标准(实验稿)》明确提出数学课程应反映数学文化,作为数学课程的基本理念之一-“体现数学的文化价值”或“数学是人类的一种文化”,并要求以渗透的方式有机地融入数学课程的内容。
但在实际教学中,数学文化的教学却不尽《九年义务教育数学课程标准(实验稿)》和《普通高中数学课程标准(实验稿)》的意愿,并没有形成为教师的教学自觉。
其中的原因有很多,有外在原因,如考试不考,数学文化在课堂教学中可有可无;只要将数学知识学好了,数学文化是“软”指标,以后慢慢去体会。
还有一些内在原因,如数学文化的教学内在特点制约着数学文化的教学;数学文化的内涵需要进一步厘清。
数学文化怎样才能真正地落实到数学课堂教学?这成为当下研究的重要课题。
下面我们以《数学通报》2007年第12期登载了崔佳佳老师的《一元一次方程》的文章为例[1],从数学文化的角度来剖析并进行改造,旨在探索数学文化的一种教学途径和方法,并由此提出“数学文化”设置的一点思考和建议。
一、“一元一次方程”的数学文化内涵。
反映一个人的思维方式、态度、价值观和数学观;现实问题大部分又是源于社会,反映了数学的社会需求,反映了社会发展推动数学发展的作用。
二、“一元一次方程”的数学文化教学的特点。
数学文化的隐性内涵决定了数学文化教学具有以下几个特点:。
(一)主体参与性将数学文化隐性内涵进行“显化”不是教师“教”出来的,也不是学生“学”出来的,而是学生主动地“悟”出来的,强调主体参与。
主体参与分为主体接受性参与和主体体验性参与。
主体接受性参与使学生理解一元一次方程的概念,懂得用方程来描述和刻画事物间的等量关系。
当然,主体接受性参与不是被动接受,而是通过教师的引导、组织,学生经过观察、归纳,得出一元一次方程的相关数学知识。
主体体验性参与指向学生关于一元一次方程背后隐藏的情感、态度、价值观、数学思想方法等非智力因素或精神层面或隐喻性的数学文化,这些因素尤其重要,影响到学生的一生,学生并从中获益。
这就要求教师不仅创设学生主体参与的良好的外部环境和气氛,利用学生主体参与的心理契机,给予学生主体参与的机会和时间,而且要求教师创设贴近学生的基本活动经验,给学生“悟”的情境。
(二)过程性从方程的历史发展过程来看,人类最早用算术方法来解决人类当时生产、生活所遇到的实际问题,后来发展到采用方程的方法,以至方程成为早期代数学的主要研究问题。
由算术方法提升到方程方法是数学思想的一次飞跃,如果学生没有经历体验过程中获得方程的思想,那么学生往往对方程的认知障碍很难突破,这已在教学实践中得到了印证:。
教师发现学生解应用题总是喜欢算术方法,使用方程的思想存在一定的障碍,总要教师不断地重复强调,慢慢地才被学生机械地接受。
造成这种情况出现的原因有多种,其中一个重要原因是学生在学习方程时,没有感受到方程思想的魅力。
因此,学生学习一元一次方程时,教师应努力创设情境,引导学生经历方程的形成和发展过程,让学生在这个过程中体会方程思想在解决问题中的优越性,并且这种体验是一个不可逾越的过程。
只有经历这个体验过程作为基础,学习一元一次方程概念就显得自然,而且成为学生用于解决实际问题的需要和自觉。
(三)差异性柏拉图曾说过这样的名言:“同样的风在刮着,然而我们中间有一个人会觉得冷,另一个人会觉得不冷,或者一个人会觉得稍微有点冷,又有一个人觉得很冷。”意思是风冷不冷不决定于风的客观存在,而决定于人的感觉,决定于主体。
就教学而言,教师教得好与不好不完全决定于教师的教,而部分决定于学生的学习情感、意志、习惯、能力等。
不同的学生在数学学习参与过程中存在不同的认识或感受,必然对数学文化的理解存在着差异。
学生主体参与的过程中体验一元一次方程,必然出现不同学生主体对一元一次方程不同的认识。
三、“一元一次方程”的数学文化教学过程设计。
基于上述一元一次方程的数学文化内涵及其数学文化教学的特点,我们不妨对崔佳佳老师的《一元一次方程》的教学过程设计作为案例,剖析或改造其中所蕴含的数学文化,反映数学教学实质上数学文化教学。
(一)情境导入,回顾概念。
崔佳佳老师通过“猜猜老师的年龄”、“日历中的方程”、“比较算术方法和方程”和“方程小史”四个教学活动来进行。
让学生主动地从生活中挖掘、体会数学,更深刻地感受数学与自己的生活息息相关,真正感受数学的社会需求这种数学文化内涵,改变日常教师问答的'方式,学生被动地忙于解答,无法、也无暇体会数学的情趣。
其二,让学生如何去思考问题的方法,启发学生主动建构,这是一个充满学生智慧的过程,从而让学生感受到数学所带来的快乐。
这种以学习一元一次方程的数学知识为载体,在学生逐渐建立科学的数学观过程中发挥其文化价值的作用。
教学建议:学生在小学阶段已经学习过方程,对方程有了一个初步认识,让学生结合自己的生活实际来进行编题已有一定的基础。
如果学生有困难,教师可以创设情境,采用层层递进的设疑方式进行。
教师重在引导、组织,学生作为主体参与者,让学生经历体会、体验方程的建构过程。
至于“方程小史”这个教学活动,我们还可以进一步去完善、丰富。
历史上,早期人类文明古国很早使用了方程思想,都是用文字的方程表达,但没有现代符号形式,如古巴比伦数学,中国古代数学,古希腊数学。
12世纪左右,阿拉伯数学家阿尔•花拉子米专门研究方程而编著了《代数学》,这时的代数学还是专门研究方程领域。
到了17世纪,欧洲数学家韦达完成了数学的符号化,经过后来的数学家如笛卡儿不断地对符号进行改进,才有我们今天“方程”符号化系统。
而中国在研究方程中也产生了符号化的思想,我们现在所说“元”,其来源于中国数学家研究方程所创用的符号,相当于今天的未知数,据文献记载,有关研究方程的数学家有李冶、朱世杰,其使用的工具是算筹来进行方程的布列和演算。
到了明清以后,引入西方的方程之后发现中国早已研究过方程,于是翻译时,很自然地将方程的未知数称为“元”对应起来,也就有了今天的“一元方程”、“二元方程”等。
简要介绍李冶的生平情况和故事。
彰显的数学文化:其一,让学生从数学史的角度领略方程思想的发展过程,了解方程原初形式以及现代符号表示区别与联系;其二,从数学史角度让学生理解一元一次方程中“元”字的由来,反映东西方关于方程的多元文化。
其三,了解数学家李冶的生平,体会李冶被元世祖所器重的一个原因,反映社会与数学的关系。
教学建议:初步介绍方程的发展过程,建立方程发展的整体脉络,了解方程的来龙去脉。
如果时间允许,可以介绍中国用算筹布列方程的思想及特点,这部分内容可以视课堂教学具体情况进行弹性设计,可以调整到建立一元一次方程的概念之后。
数学文化与数学史论文篇十四
在这个寒假里,我接触到了《数学史》这本书。这本书介绍了数学从有记载的源头向最初的算术、几何、统计学、运筹学等领域不断深化发展的历史进程,以及如今数学的发展。
这本书分为两篇,上篇是数学简史,下篇是数学概念小史。这本书中令我印象最深的数学家就是费马。皮埃尔・德・费马是属于文艺复兴时期传统的人,他处于重新发掘古希腊知识的中心,但是他却问了一个希腊人没有想到过要问的问题―费马大定理。这个问题困惑了世人358年,直到1994年的9月19日安德鲁・怀尔斯才宣布解开这个问题。这个问题起源于古希腊时代,它联系着毕达哥拉斯所建立的数学的基础和现代数学中各种最复杂的思想。费马大定理的故事和数学的历史有着密不可分的联系,它对于“是什么推动着数学发展”,或者是“是什么激励着数学家们”提供了一个独特的见解。费马大定理是一个充满勇气、欺诈、狡猾和悲惨的英雄传奇的核心,牵涉到数学王国中所有最伟大的英雄。巴里・梅休尔评论说,在某种意义上每个人都在研究费马问题,但只是零星地而没有把它作为目标,因为这个证明需要把现代数学的整个力量聚集起来才能完全解答。安德鲁所做的就是再一次把似乎是相隔很远的一些数学领域结合在一起。因而,他的工作似乎证明了自费马问题提出以来数学所经历的多元化过程是合理的。
读了数学史后,我认为数学在我们的生活中扮演着不可或缺的角色,只有学好数学,学会应用数学,我们才能在这个正在向数字化发展的社会稳稳地站住脚跟。
数学文化与数学史论文篇十五
摘要:数学教学中蕴涵着丰富的“文化”资源!数学能完善人的心智,净化人的灵魂。
如今种种新理念在价值取向上都在追求教育的民主与公平,追求个性的发展和群体的合作,追求“科学”与“人文”的融合,强调人的个性发展。
数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
作为"文化"的数学,要充分展示数学知识发生、发展及其应用的过程,体现数学与生活的联系,体现数学的人文价值。
而其中"数学的观念、意识和思维方式"是"数学文化"的核心。
1、学习方式的丰富。
传统的数学教学更多地倾向于"系统学习",不可否认这是一种高效的接受式学习方式,但面对日益纷繁复杂的知识经济社会,仅有这种学习方式已远远不够。
把学生从大量机械重复练习中解放出来,让儿童在动手、动口、动脑中进行创造性地学习已成为必然。
如在教学"圆的认识"中,一位教师先用现实生活中圆形的物体举例,使学生认识了圆与其他平面图形的不同之处。
至于怎样画圆,教师不作示范,就让学生自己想方设法大胆尝试。
教师进一步激励学生进行探索:"如果要建设一个圆形大花坛能用圆规画出来吗?"进而再探索"汽车的车轮为什么是圆的,而不是其他形状?"这种教学给学生提供了较大的想象空间,鼓励学生求异创新,大胆探索;使学生的实践能力、思维能力有了很大的提高。
2、人格个性的完善。
在中国数学教育界,常常有"数学=逻辑"的观念。
人们把数学看作"一堆绝对真理的总集",或者是"一种符号的游戏"。
但是数学是门大众文化,从古希腊数学发展至今,其中有着它自己深深的文化渊源。
数学教学就是要挖掘蕴藏在数学之中的丰富的文化资源,实现科学价值与人文价值的和谐,促进学生的可持续发展。
比如在教学"百分数的认识"一课中,在课接近尾声时引导学生就"我国人口占全世界的2l%、我国耕地面积占全世界的5%"两条信息谈谈自己的看法。
学生充分调用自己的数学、地理、人文知识,各抒己见。
教师在不经意间升腾起学生的爱国豪情,更激起学生对地球资源的珍视。
一种关注地球未来命运的崇高精神随着百分数的认识得以滋养和生发,这也许正是人文化数学课程的独特魅力。
3、终身教育的建立。
教育是培养人的社会活动,教育的最终目的并不只是让人学会认识若干条自然规律或一两种技能,而是使人得到全面有效地发展,成为一个思想素质、专业素质、心理素质、德行等全方位发展的人才。
要培养这样的人才,仅靠传统的专业教育是难以实现的,必须通过加强人文教育才能达到这一目标。
所以终身教育与其说是一种制度,不如说是一种文化的追求,是一种理想。
它的基本要义就是使人人成为主动适应来来变化之人。
而要成为主动适应未来的可持续发展的人,其关键是学会学习!唯如此,才能以不变应万变,成为时代精神的领路人。
进入21世纪之后,数学文化的研究更加深入。
一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。
如在教学"圆柱体体积计算公式"时,我先讲了曹冲称象的故事,一方面激发了学生学习的兴趣,另一方面又引起了学生的沉思:
可不可以把圆柱体转化成已经学过的图形来分析呢?而在把圆柱体转化成长方体时,我又根据学生的叙述,用多媒体演示了多种切拼方法,在切拼的时侯学生发现:无论哪种方法都要把圆柱分得很细小,拼成的图形才越接近于标准的长方体。
在这一过程中,向学生渗透了转化、微分、积分等数学思想方法。
我想,为学生的可持续发展服务,这可能在学生以后的人生中是比圆柱体积公式更有用,更有生命价值的知识。
日本著名数学教育家米山国藏在《数学的精神、思想和方法》中指出:数学应该不仅指数学知识,而尤其是数学的精神、思想、方法。
学生在初中、高中等所接受的数学知识,因毕业进入社会后几乎没有什么机会应用这种作为知识的数学,所以,通常是出校门后不到一二年便很快就忘掉了。
然而不管他们从事什么工作,唯有深深地铭刻于头脑中的数学精神、数学思维方法都随时随地发生作用,使他们受益终身。
数学的精神、思想方法对人的发展起着举足轻重的影响。
数学教学中蕴涵着丰富的"文化"资源!数学能完善人的心智,净化人的灵魂。
如今种种新理念在价值取向上都在追求教育的民主与公平,追求个性的发展和群体的合作,追求"科学"与"人文"的融合,强调人的个性发展。
一句话,强调"完人"的塑造,促进个体的持续发展。
这要求数学成为每个学生都要学、都能学、都爱学、都会学的一种文化。
数学文化与数学史论文篇十六
家具设计与制造专业自招生以来,始终坚持教学模式必须从以知识发展为导向的学科中心.走向以社会需求为导向的学生能力中心模式,结合每届学生就业情况,深入就业单位调研,走访用人单位对人才培养的评价,与毕业学生沟通座谈,全面了解行业发展及社会对人才的需求.通过分析就业趋势变化,邀请行业、企业专家对专业人才培养方案进行论证,不断完善专业培养方案。
2、科学设置课程体系。
细化应用型人才培养应掌握的基础知识、实践能力和动手能力要求,详细研究课程的性质和内容,注意课程设置的前后衔接及课时安排,对传统课程的经典内容加以强化。
3、加强实践环节针对性。
发挥校内、校外实习实训基地作用,强化学生动手操作能力培养,充分体现学生的主体地位,在校内实训基地完成《家具设计》、《工艺与设备》、《模型制作》、《材料学》等课程的实践学习:组织学生参与行业设计大赛.真题真做。学生利用课堂学习时间、课外业余时间,用他们自己的计算机查找资料,进行作品设计,全过程组织学生进行典型结构分析,大赛作品案例分析,从小组讨论,到课堂全班讨论.从学校机房到下学生宿舍的计算机指导,教师通过课堂全面指导、下宿舍逐个指导,参与学生的讨论等,帮助学生对所学知识进行总结和应用,学生动手能力得到强化,学习的主动性和积极性明显提高,不仅强化了学生独立思考的能力,也培养了学生之间相互协作的团队精神,学生自信心明显增强;每届召开专场毕业生人才供需见面会,企业与学生直接交流,双向选择,学生在企业顶岗实习,完成毕业设计等.达到了理论知识与实践过程的紧密结合,实现学生“知识、能力、素质”全面协调发展。
4、用人单位参与课堂教学。
企业提前介入人才培养课程内容建设,根据企业管理人才培养的需求.增加ie工业工程内容、出口产品全过程的检验内容的学习,聘请企业优秀技术员到校授课。课程内容中增加企业最先进设备视频教学等,课程内容丰富,针对性强,实用性强,真正将校内与校外、教室与实验室、协会与企业都融为一个“大课堂”,缩短了学生与企业、社会的距离,做到“了解行业,适用岗位,创新发展”,校企建立共同育人、合作就业,完成了真正的教育和训练,突出应用型人才培养过程的开放性.达到家具人才培养与家具企业人才储备目标相一致。
5、研促进教学。
科学研究是教师自我完善与发展的'过程,革中注重把科学研究作为提高教师素质的关键环节,强调教师科研为人才培养服务,鼓励教师参与行业协会活动,专业教师主持科研项目.教师参与专业评审,及指导学生进行专利设计、论文发表等。教师把科研成果充实到教学环节中,通过科研潜移默化地熏陶着学生,学生参与科研项目、市场调研、撰写论文、专利申请等,综合素质得到提升,学习能力分析能力增强。
6、家具设计与制造专业,坚持产学研用。
突出应用型人才培养,通过不断改革与探索,教育教学质量不断提高,教学效果良好。人才培养模式的改革和创新是深化高等教育改革、提升办学水平的强大动力,我国基础设施建设、城市化进程的加快,给家具行业发展带来不可忽视的推动,家具专业紧紧围绕应用型人才培养目标和创新人才培养观.通过与行业、企业开展各具特色的产学研合作,通过对行业发展、社会人才需求的调研.人才培养方案应用性得到强化,课程体系更趋合理。教学内容实用,创造性地将行业设计大赛、企业订单培养特设课程、专业专场人才供需见面会、学生作品专利等引入学习的全过程,从整体上优化学生的知识、能力、素质结构,参与科研能力增加,学生发表论文、发明专利的数量和质量不断提高,适应社会、行业能力得到提升。人才培养模式的改革,对学生的专业知识水平提高和个性化发展起到了重要作用,培养了学生的创新意识与创新精神,推动了教育理念更新和学生就业能力提高。
数学文化与数学史论文篇十七
摘要:随着计算机技术和测绘技术的发展和测绘仪器的更新,传统的测图技术已经基本上被数字测图技术所取代。为适应当前测绘生产单位对人才的要求,根据高职教育的培养目标和高职人才的定位目标,测绘专业教学必需把数字测图课程摆到一个重要的位置上来。本文根据工作实践对在测绘专业教学中对数字测图课程的教学体会予以阐述。
关键词:测绘;数字化测图;教学。
数字化测图足以计算机为核心,在外连输入输出设备硬件、软件的条件下,通过计算机对地形空间数据进行处理得到数字地图,需要时也可用数控绘图仪绘制所需的地形图或各种专题地图。《数字测图》是高职测绘的一门专业基础主干课程,它既与学习控制测量、工程测摄、地籍测量等专业课程紧密相关,又为从事测绘生产工作打下坚实的基础。
一、依据培养目标组织教学内容:
高等职业技术教育培养的是高素质技能型专门人才,注重培养学生的实践动手能力和适应企业测绘生产的需要。测量工程专业学生毕业后大多是面向测绘基层一线的工作,他们不仅要能完成测绘内外业的基本工作,而且在遇到问题时要具有一定的分析问题、解决问题的能力。根据这一特点,主要从以下三方面组织教学:
(1)数字测图理论知识:主要讲述数字测图概念、数字测图与白纸测图区别、数字测图系统组成、数字测图作业过程等内容,dtm的原理及应用等,学生可以对数字测图有一个整体的初步了解。
(2)数字测图内外业一体化:主要讲述目前企业比较流行的利用全站仪进行野外数据采集内业编绘成图过程。包括两种作业模式数字测记模式和电子平板测绘模式。数字测记模式就是用全站仪野外采集地物、地形特征点,同时配以人工绘制草图,然后在室内利用数字化成图软件(如casss)在计算机上根据草图绘制数字地形图;电子平板测绘法全站仪配装有电子测图平板系统(如iepsw)的便携机,野外实时观测、数据传输、展点、连线,加注地物、地貌、植被符号和文字注记,现场绘制成数字地形图。外业包括全站仪的操作外业,数据的采集与处理,数据通讯,测图软件的熟悉,图形的生成与编绘等。其中的全站仪介绍是重点。
(3)纸质矿图的数字化:此项内容结合平煤实际情况,以采掘工程平面图、地形地质图为主要矢量化内容。主要讲述纸质矿图的数字化过程,用扫描仪对图纸地形图进行扫描,获取栅格图像,再用数字化成图软件对栅格图像实施定向处理和变形平差调整,使用鼠标对栅格图像逐点逐线进行跟踪矢量化,生成矢量化矿图。
二、配备教学设施:
数字测图教学涉及到计算机硬件(包括计算机、全站仪、rtk、数字化仪、扫描仪、绘图仪等设备),以及数字测图软件如:cass、epsw等软件的使用,所以除应具备数字化测图系统之基本硬、软件外:还应配备以几个方面的教学设施:
1供教学和学生上机实习用的计算机房。数字化测图离不开计算机机房,因数字测绘软件的操作界面和操作方法许多界面和窗口教师无法直接在黑板上讲清楚:利用机房教学的方法,学生可以直观地看到软件的操作界面,教师可以边讲授边演示操作方法,学生能清楚地看到计算机的操作过程,会使讲课内容直观易懂。且在教师讲述完后,学生可以马上动手练习。做到随学随操作,可以很好地提高教学的效果。有利于学生对知识的理解和掌握,也有利于调动学生的学习积极性,提高学习效率。
2全站仪模拟操作软件。在当前各个学院测绘教育中测绘科技知识不断增长,而教学时间和设备相对有限的矛盾中,若配备全站仪模拟操作软件,在讲述全站仪的操作使用后,可以先让学生在计算机上对全站仪进行模拟操作,熟悉之后再进行实际操作。则一能节约仪器设备的投入,全站仪的价格目前依然很高,如果要购置较多的全站仪,势必要花费大量的资金,如果充分利用计算机模拟操作,可以节约仪器设备的投入。二能弥补全站仪操作的时间不足。因为测量实习一般都是分组实习,学生是轮换操作仪器,如果在计算机上模拟操作,则每个学生都有足够的时间来操作。三能更好地维护全站仪。全站仪是贵重的电子测量仪器,学生在不熟悉的情况下操作,容易损坏仪器的内部程序,而通过计算机模拟操作后,这个问题就能较好地避免。
3高素质的教师队伍。要求指导数字化测绘教学与实践的教师,除应具有良好的专业知识外,还应具有一定的计算机基础知识,能熟练地应用计算机对数字化测绘资料进行全部操作,熟悉国内外数字化测绘技术发展状况,掌握教学中采用的数字化测图软件的编制原理及实用技术要领;对外业数据采集、内业数据处理及成图全过程有一定的实践经验;对于在实际操作中需要掌握的关键技术及容易出错的地方,应该预先给学生进行提示演示,提高教学效率与水平。
三、理论教学。
理论教学是学好这门课的基础,除介绍数字测图概念、数字测图与白纸测图区别、数字测图系统组成、数字地面模型建立的基本理论和方法外,还应结合一至两种测图软件进行实际操作。以帮助学生学习和应用。在讲授数据采集方法时,可引入一些实例,以帮助学生学习具体的.操作方法和技巧。在讲授图形编辑和数据处理时,可事先准备好一些实测数据。建立一个有代表性的数字地面模型,演示编辑和数据处理,让学生初步掌握作业方法和过程。在掌握一定理论的基础上强化操作练习,学生就能掌握这门技术。
四、实训教学。
数字测图课程本身是实践性极强的课程,偏重于实际操作,约70%的教学学时是在全站仪野外数据采集和室内计算机成圈软件绘制地形图中进行的。学生对课堂知识的理解,消化都需在测量实际中得到巩固,组织好测图实训是课程改革的重要一环,在实训中注意以下几点:
1讲清测图作业方法,把传统测图与数字化测图内容融为一体,数字测图就其自身内容分为“外业数据采集”和“内业编辑处理”两部分,外业数据采集中可突出传统白纸测图作业方式,草图绘制与传统测图结合,用全站仪收集处理数据,草图绘制按原平板测图要求进行,加添观测点编号内容,为后续“引导文件”编制打好基础,选样保留了传统测图的特点,使学生在将来的工作实践中,不致对传统作业方法一无所知,又顺利完成了新测图方法的数据采集,具有衔接两种测图方式的作用。
2在实训过程中,应严格要求学生,要求每个学生必须从观测、记录、画草图、数据传输、cad绘图、图形输出等环节都能独立完成。做到日日清,即每天的外业观测成果必须在当晚全部绘出;人人会,即内业编辑以“引导文件”为主线,在各组挑选一到两名计算机基础较好的学生进行图形的深化处理,一般同学只要求完成“数据文件”和引导文件”的编写,在cass上应用“自动成图”功能,完成数字化成图,这样即保证了每个学生对教学内容的理解和掌握,又保证小组的测图成果。
3实训中要重视训练学生分析问题和解决问题的能力。如在野外采集数据时全站仪常用“一步测量法”,当最后的导线角度闭合差却超过了限差时,这时不要急于要求学生返工重测,而是引导学生对实验过程进行回忆和对数据进行分析,实际操作过程中有两种出错的可能:一种情况可能在某测站点上瞄错了目标:另外一种情况可能是测站点对中有问题。若是前者,瞄错目标点重测,即可得到符合精度要求的结果;若是后者原因,则又有两种可能:一是各点对中均有问题,为累积误差,必须重测:二是只是某点对中有问题,则该点重测即可。
五、工学结合。
数字测图是一门实践性很强的课程,通过工学结合,让学生校外的实习基地有2、3个月的顶岗实习,可以使学生把理论与实践充分结合,提高对理论知识的理解和掌握;通过工学结合,可以让学生接触到书本上无法解决的实际问题,促使他们在实践中不断学习,不断钻研业务,提高自身水平:通过工学结合,可以促使学生不断地观察问题,分析问题,解决问题,提高自己的动手能力;取得实践的经验和收获,而且能进一步提高学生在校学习的积极性。同时,参加实际的数字测图生产任务,学生们必须严格按生产上的规章、要求来进行测图量,有助于测绘技能的提高。