平行四边形的面积教学设计理念(汇总22篇)
在总结中,要客观评价自己的成绩,避免过度自夸或自责。写作是一种表达思想的方式,我们要不断锻炼自己的写作能力。下面是一些经验丰富者写的总结样本,供大家参考借鉴。
平行四边形的面积教学设计理念篇一
教学目标:
通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。
教学过程:
一、看一看:得出平行四边形与长方形的关系。
1、 让生看p69,观察方格纸上的长方形和平行四边形,并填写:
每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是( )平方厘米;平行四边形的面积是( )平方厘米。
2、 观察并讨论:这个长方形和平行四边形有怎样的关系?
在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。
二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。
1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。
2、 让生小组讨论,尝试。
3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。
(2)比一比:这两个图形有什么关系?什么变了,什么没变?
这两个图形形状变了,但面积相等。
(3)、请你量一量长方形的长与宽,算出它的面积。
4、 总结得出。
如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:
s=ah。
(1) 让生独立做。
(2) 检查:18×10=18(平方米)。
(3) 注意:面积单位。
6、 看书,质疑。
三、练习。
底(厘米)。
50。
12.5。
100。
9
高(厘米)。
40。
8
36.4。
4
面积(平方厘米)。
12米。
25米。
50厘米。
3、 有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?
4、 有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?
四、总结。
五、课堂作业。
p71 5。
平行四边形的面积教学设计理念篇二
每个学生准备一个平行四边形。
1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2.好,下面谁来说一说你找到了哪些学过的图形?
3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习的平行四边形面积计算。
(一)、数方格法。
用展示台出示方格图。
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)。
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法。
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法。
平行四边形的面积教学设计理念篇三
内容的梳理:
在《2011版数学新课标》中,“图形与几何”这部分内容包括:空间和平面基本图形的认识,图形的性质、分类与度量,图形的平移、旋转、轴对称、相似和投影,平面图形基本性质的证明,运用坐标描述图形的位置和运动。“平行四边形的面积”这节课,是在图形的度量这一范围当中。
与其知识相关联的知识链接:一是空间平面基本图形的认识,二是长方形和正方形的周长与面积的计算,三是关于平行与垂直的认知。这些是学习本课内容的知识基础。此外,“平行四边形面积”这节内容,对后续学习三角形、梯形、组合图形及圆形等其他平面图形的面积也是一个铺垫。
教材的解读:
平行四边形面积计算是在学生掌握了图形的特征以及长方形、正方形面积计算的基础上学习的,是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积的基础,平行四边形面积的计算又为学习三角形和梯形面积计算打下坚实的基础。
学生的了解:
五年级的学生已经具备初步的预习能力,也有了一定的活动经验,根据教材中的描述,学生基本上能对割补法有初步的体验,只是在语言的描述上还有一定的困难。但小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难,因此本节课的学习就让学生充分利用好已有的`知识,调动他们多种感官全面参与新知的发生、发展和形成过程。
思想的渗透:
“转化”是数学学习和研究的一种重要思想方法,平行四边形的面积公式推导就采用了转化的方法。在本节课的教学中,应以学生的探究活动为主要形式,通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么关系,从而找到面积的计算方法。这样,学生在理解的基础上掌握面积计算公式,印象深刻,思维也得到发展。
活动经验的积累:
平行四边形面积公式的推导是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本节课教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切记有教师带着做。因此,教学中先用数格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。通过实际操作活动,发展学生的空间观念,培养动手操作能力。
很高兴,能有这样的机会和各位数学精英们切磋交流,还恳请各位多提宝贵意见,多多给予我指导,谢谢!
平行四边形的面积教学设计理念篇四
知识与技能目标:
过程与方法目标:
能够运用公式解决实际问题。
情感态度与价值观:
通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
1、课件。
2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。
这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。
一、激情导课。
(大屏幕出示校园情景图)。
同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)。
看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)。
2、运用公式解决生活中的实际问题。
师随着学生的回答在课题前板书:探究和运用。
师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)。
二、民主导学。
同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)。
任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。
提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)。
自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。
展示交流:
1、先请数方格的小组上台展示。
预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。
我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。
(对小组进行评价)。
师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。
2、请用割补法的小组上台展示自己的研究成果。
预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
(师随着生的表述板书)。
(对小组进行评价)。
预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......
(对小组进行评价)。
预设:(3)、师演示。
师:计算公式我们通常都可以用字母来表示。面积用s,底用a,高用h来表示,那么平行四边形的面积可以表示为:s=ah。
师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)。
任务二:解决问题。
自主学习:独立在练习本上解答,完成后与小组内同学交流。
展示交流:注意指导学生的书写格式。
三、检测导结。
2、已知下面图形的面积和底,怎样求出它的高?
以上三题,做对一道得一颗星,全部做对得三颗星。
集体订正,组内互批。
反思总结:请同学们谈谈这节课的收获吧!
平行四边形的面积教学设计理念篇五
1。掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2。通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3。在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
理解平行四边形面积计算公式的推导方法与过程。
平行四边形、学习单等。
课前布置预习第87,88页内容,完成预习单。
一、创设情境,导入新课。
1。课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的.非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:平行四边形
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
平行四边形的面积教学设计理念篇六
1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
一、创设情境,激趣导入。
学生汇报。
(多媒体出示一块长方形的地,一块平行四边形的地)。
学生汇报。
师:你们准备怎样解决呢?
师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)。
多媒体出示方格和长方形的长与宽,学生求出长方形的面积。
学生小组交流。
二、动手实践,探索新知。
学生汇报,教师引导:
(多媒体出示格子,并说明一个方格表示1平方厘米)。
师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。
师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)。
学生猜测。
师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。
学生动手实践,合作交流。
学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)。
教师用课件演示剪——平移——拼的过程。
师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:
1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?
2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
学生汇报,教师归纳:
经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。
学生汇报,教师板书:
此主题相关图片如下:
s=a×h。
师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)。
三、练习深化,巩固新知。
此主题相关图片如下:
2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?
此主题相关图片如下:
3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
此主题相关图片如下:
四、知识应用,总结评价。
师:生活中还有哪些地方应用到我们今天所学的知识呢?
学生交流。
学生交流。
平行四边形的面积教学设计理念篇七
1.学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。
2.但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2.过程与方法目标:
(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。
(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。
3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)。
这块花坛既不是长方形也不是正方形,如何求出这块地的面积?
为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习的平行四边形的面积。(板书:平行四边形的面积)。
以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)。
1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。
根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!
2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。
(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)。
方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。
1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)。
2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)。
(2)学生实验操作,教师巡视指导。
3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?
(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)。
(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)。
(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)。
(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)。
4.全班交流推导公式:
(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!
(2)有没有不同的剪拼方法?(继续请同学演示)。
研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。
1.出示书上82页的1题,请大家做一做。
2.汇报交流:谁来说一说你是怎么做的?
3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)。
1、试一试。
35cm20dm4.8m。
26cm28dm5m。
公式:公式:公式:
列式:列式:列式:
2、我能填得准。
反思一下刚才我们的学习过程,你有什么收获?
平行四边形的面积教学设计理念篇八
教学目标:
通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。
教学过程:
1、 让生看p69,观察方格纸上的长方形和平行四边形,并填写:
每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是( )平方厘米;平行四边形的面积是( )平方厘米。
2、 观察并讨论:这个长方形和平行四边形有怎样的关系?
在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。
1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。
2、 让生小组讨论,尝试。
3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。
(2)比一比:这两个图形有什么关系?什么变了,什么没变?
这两个图形形状变了,但面积相等。
(3)、请你量一量长方形的长与宽,算出它的面积。
4、 总结得出。
如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:
s=ah。
(1) 让生独立做。
(2) 检查:18×10=18(平方米)。
(3) 注意:面积单位。
6、 看书,质疑。
三、练习。
底(厘米)。
50。
12.5。
100。
9
高(厘米)。
40。
8
36.4。
4
面积(平方厘米)。
12米。
25米。
50厘米。
四、总结。
五、课堂作业。
p71 5。
平行四边形的面积教学设计理念篇九
1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。
2、通过操作、分析讨论等活动,培养学生
动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。
3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。
4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。
能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。
一、情景引入
1、联系实际选择建房用地。
(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。
二、探究新知
1、面积计算公式的推导:
(1)讲解相关的要求。明确小组研究要求。
(2)操作验证。巡视,个别指导。
(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。
问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)
(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。
引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)
教师逐步点击交互,得出:
长方形的面积=长×宽
平行四边形的面积=底×高
(5)用字母表示面积计算公式。
(6)小结。(明确转化的方法。)
2、面积计算公式的应用:
(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。
讨论后,给出底和高,进行计算。
(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。
(3)试一试:计算平行四边形的面积。
3、教学小结。进行推导:
(1)明确研究的要求。
(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)
(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。
(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。
(5)了解认识、明确:s=a×h,s=a·h或者s=ah。
(6)进行小结。
4、初步运用公式。
(1)教学试一试,(2)练一练。
三、巩固应用
1、练习二“第1题”。
先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。
2、练习二“第2题”。
可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。
3、练习二“第3题”。
这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。
4、练习二“第5题”。
让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。
四、课堂总结
今天学习了什么?你有什么收获?(让学生自由发挥。)
上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的`欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
平行四边形的面积教学设计理念篇十
在数学教学中,要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?正方形的呢?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所觉。
3.分层练习,突破重点难点。
巩固练习阶段是帮助学生掌握新知,形成技能、发展智力、培养能力的重要手段。心理实验证明:学生经过近三十分钟的紧张学习之后,注意力已经度过了最佳时期。此时,学生易疲劳,学习兴趣容易降低,差生的表现尤为明显。为了保持较好的学习状态,提高学生的练习兴趣,我除了注意练习的目的性、典型性、层次性和针对性以外,还特别注意在巩固新知识的基础上进行加强练习。选择合适的底和高计算面积、已知面积求高(逆向思维训练)、等底等高图形面积计算。
在学生初步掌握平行四边形面积计算公式的基础上,又设计了一组选择练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。这样,既体现了知识的有序性,又保证了重点,分散难点,便于学生理解与掌握,从而达到学习目标的全面落实。学生兴趣浓厚,攻克一个个难关,意犹未尽。,学生练习中错误率低,取得了满意的效果。时间把握得不够,最后两道有针对性的练习没有得到训练,从而没有很好的达到巩固新知的作用。
4.我的遗憾。
本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了,学生对平行四边形面积推导过程茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学设计理念篇十一
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
一、情境激趣。
1.创设喜羊羊与灰太狼比较草皮的大小而争吵的故事。
2.引导学生观察它们的草皮各是什么形状?
3、提问:长方形的面积怎么算?
二、自主探究。
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上87页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积。
一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找。
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
a.形状变了,面积没变。
b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的'面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、巩固运用。
1.明辨是非。
4.练习十五第3题。
四、课堂总结。
通过这节课的学习,你有哪些收获?(学生自由回答。)。
平行四边形的面积教学设计理念篇十二
《平行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解平行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:
优点。
在教学前,我先让学生预习《平行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握平行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(平行四边形卡纸、剪刀)。
在探究平行四边形的面积计算方法时,我引导学生思考“如何将平行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原平行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的提高。由此,对平行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。
在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。
不足与相应措施。
学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。
平行四边形的面积教学设计理念篇十三
《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。
在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。
在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。
数学教学的核心是促进学生思维的.发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。
教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学设计理念篇十四
数学教学的核心是促进学生思维的发展。教学中,要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在我这节课中,我让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。所谓“互动”就是在课堂教学中师生要有交往,生生要有交往,不能是教师的“满堂灌”、“满堂问”、“满堂练”。师生应该互有问答,学生与学生之间要互有问答。在这节课中,教师始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。在这节课中,每一个环节,都对学生提出明确的要求,引导学生思考,动手操作,推理与表达,并让小组到台前汇报,充分展示,开展小组学习竞赛。
1、是让学生应用公式计算平行四边形面积,通过板演强调书写格式。
2、是让学生判断三个平行四边形的面积计算的对与错,让学生明白计算平行四边形的面积要用对应的底和高相乘。
3、是计算两组平行四边形的面积,通过评价让学生指导第二个平行四边形可以用两种方法来计算。
4、是判断在一组平行线之间的两个平行四边形的面积是否相等,明白等底等高的两个平行四边形的面积相等。
5、让学生知道已知平行四边形的面积与高,求底要用面积除以高;知道面积与底求高要用面积除以底。
6、让学生课后探究,把平行四边形拉成长方形,面积有没有变化,周长有没有变化,拓展学生思维。
不足:
课堂上有效的评价语言在本节课中的体现不够完善。自己觉得在引导和组织学生上欠缺一些,教学过程当中教学机智不够灵敏,这也是我今后所要重点刻苦钻研的一部分。
平行四边形的面积教学设计理念篇十五
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点,整个教学过程由旧知导入新课,进行新课,巩固练习,课堂小结几个环节组成。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。因此,要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
在这节课中,一开始数格子就开始渗透割补的方法,不仅为学生接下来研究平行四边形的面积,提供了方法,还为学生的研究提供了思路。在推导平行四边形面积公式的时候学生马上能想到运用割补的方法把平行四边形的面积转化成已经学过的图形的面积。
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考得出:长方形的面积与原平行四边形的面积相等,拼成的长方形的长和宽相当于平行四边形底和高,最后使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
在平行四边形面积的计算公式推导出来后,我设计了一些变式练习,强化巩固学生获得的知识,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力,练习第3题:解决生活问题。学校有一块近似平行四边形的花坛,底4米,高6米,每平方米花坛需要5元,问这个花坛种花大约需要多少钱?这环节让学生综合运用知识解决问题,培养学生的实践能力。
另外,我还注意培养学生的发散性思维,设计了一题:一个平行四边形的面积为12平方米,它的底和高可能是几?这个颇具开放性的问题。体现了对平行四边形面积公式的运用和理解,既有层次性,又能让学生明白虽然平行四边形的形状不相同,但只要等底等高,这两个图形的面积也相等。
这节课在老师们的帮助下,我的课有了明显的进步,可在上课时还存在着不少的缺憾:
还有课堂语言不够简练,缺少与学生之间的沟通与交流,这几点都还是有待提高的,不过通过这次上课也让我锻炼了胆魄,让我对课堂艺术有了进一步的理解,非常感谢老师和学校领导给我这样一个机会。
平行四边形的面积教学设计理念篇十六
金秋十月,桂花飘香。我有幸参加《平行四边形的面积》“同课异构”的教学研讨。下面我将自己的教学做如下反思:
建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,本课创设的问题情境是以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。
有助于学生感受教学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,理解数学,提高学生的数学解决问题的能力。
在学生探索活动开始之前,教师没有任何帮助,但正是这种没有铺垫的教学,学生真实的思维活动得到了体现,问题解决的策略不再像前述教学整齐划一,课堂更加丰富多彩,教学过程充满了生命活力。实践证明,学生完全具备独立解决问题的能力,他们的成长并不需要教师“迫不及待”的帮助,他们需要经历从混沌到清晰的过程、正确与错误的考验,他们需要的是探索的时空、交流的机会和心理安全的、富有激励性的学习氛围,这些才是学生需要的帮助。
学生动手若干分种,教师要注意巡视,选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的.叙述平移(可能学生说得不准确)。这样让学生凭借“独立思考、小组交流互评”的渐进过程进行充分的自主探究,在“亲历”和“体验”中初步感悟计算平行四边形面积的方法。这样设计,让学生经历从特殊问题到一般问题的过程,使得学生的数学学习做到重点突破,为后面进一步学习面积公式作好铺垫。当然,在这个环节中不管是操作还是汇报,感觉还不够到位。
感悟。
正如波利亚所说:“学习任何知识的最佳途径都是由自己去发现。因为这种发现,理解最深刻,也最容易掌握内在规律与联系。”在案例二中,正是有了自主探索的时空,学生才充分调动自己原有的认知结构和生活经验,发挥自己的聪明才智,通过不同角度的探索,想出这么多的方法来解决新问题;正是有了交流的机会、展示的舞台,学生才敢于大胆表达不同的见解,提出个性化、创造性的问题解决办法;也正是经历了从混沌到清晰的过程、正确与错误的考验,学生才从中体会到了数学思考的乐趣、探索成功的喜悦。
我们是农夫,但不是“拔苗助长”的农夫,应是一个懂得怎样真正帮助禾苗成长的“农夫”,是一个让“禾苗”充分享受自由空间、阳光和雨露,也经历风吹雨打,最终能品尝到“硕果累累”之喜悦的农夫。
平行四边形的面积教学设计理念篇十七
1.课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。
2.本节核心内容的功能和价值(为什么学本节内容),
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
1.教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。
2.学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线。
3.学生认知障碍点:学生形成本节课知识时最主要的障碍点。
学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标的确定应注意按照新课程的三维目标体系进行分析
教学目标:根据新课标要求及教材特点,充分考虑五年级学生思维水平,确立如下目标:
知识与能力:通过自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
过程与方法:经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养分析、综合、抽象、概括的能力。
情感态度价值观:感受数学与生活的联系,感受到数学知识的应用价值和探究知识的乐趣
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过转化,发现长方形和平行四边形之间的联系,从而推导出平行四边形面积计算公式。
关键点:通过实践—理论—实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
平行四边形的面积教学设计理念篇十八
本节课我主要采用自主探究、合作交流的方式进行,根据学生的预习,先说一说自己有质疑的、不会的问题,以及自己不同的见解、看法和重点等。接着让学生在展示台上演示自己的操作过程。教师追问,引发学生思考,学生评价,当堂检测,充分尊重了学生的主体地位,突破难点,解决了关键,发展了学生能力,很好地完成了学习目标。
在创设情境,设疑引入环节中,学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。
在操作探索,获取新知环节,我主要让学生亲身经历用数、移、拼等操作方法在自主、合作的积极学习氛围中推导出平行四边形的面积公式,学会“转化”的方法。同时使学生明白学会一种解题方法比做十道题都重要,教会学生不仅要“学会”,而且要“会学”。充分尊重了学生的主题地位,突破了难点,解决了关键,发展了学生能力。
在练习环节,练习题量虽然不大,但内涵盖了本节课要讲的所有知识点,具有一定的弹性,使不同的学生得到了不同程度的发展,从而进一步内化了新知。同时,在成功的喜悦中,使他们体会到,数学就存在于我们身边,只要细心观察,认真思考,都可以找到数学方面问题。
回顾本节教学,我也感到了不足之处,比如:
应该让学生更多的表达,更清楚的表述,教师应该是一个快乐的倾听者。而我在课堂上虽想到了这一点,还是急于归纳概括学生的结论,应让学生再说的充分些,让每个学生有更深刻的理解的基础上,站在更高的角度去归纳,更深更全面的去概括。
学生明白但表述不清楚,就是因为被圈在了教师给的固定模式里,因此我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。不仅要求学生在课堂上大胆地说,而且还要求学生与同学互相交流着述说,这样让学生充分展示自己的思考过程,并用流利的语言来叙述给同学听,在这样的过程中才能不仅能及时发现问题,及时查漏补差。
平行四边形的面积教学设计理念篇十九
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的'原则,设计四个层次的练习题:
有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)。
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的面积教学设计理念篇二十
《平行四边形的面积》是北师大版五年级上册第四单元第三课时的内容。这在学生已经会在格子图中求出图形的面积,已经认识了平行四边形的底和高,并会找、会画相对应的底和高的基础上进行教学的,基于学生的知识起点和学生的学情分析,我有了本课的教学设计。我追求的是让教学贴着学生的思维前行,让学生在直观操作中学习数学。今天,我有幸将这课的设计在早毓小学展示。现静下心来反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
首先,我对教科书中的主情境加以修改,以贴近学生的生活情景导入,利用课件出现学校操场旁有一块长方形的空地要绿化,请同学们算出绿化的面积,随即从这个长方形中出现一块没有任何数据的平行四边形地,再引导学生将这个平行四边形与长方形比一比,再估测这个平行四边形的面积大约有多少?以培养学生估测意识。
继而询问学生“有什么办法能比较准确地算出这个平行四边形的面积”。学生根据已有的学习经验马上想到用数格子和计算的的方法。然后围绕“有什么办法能比较准确算出这个平行四边形的面积?”组织学生动手探究。这样既复习了旧有知识,又为学习新知识做铺垫,同时也比较自然地引入新内容。
1.《新课程标准》明确指出:“有效地数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”动手实践是学生学习数学的主要方式之一。它有利于让学生参与知识的形成过程,促进学生对抽象数学知识的理解,而且培养了学生的思维能力、创新能力和合作精神。因此,在本课的教学设计中,我利用学生好动、好奇的心理,将这块平行四边形做成卡片模型,并提供了一些探究的材料和工具。让学生根据自己的学习经验,自主选用喜欢的方法来验证自己的猜想。为学生创造了一个观察、操作的机会,以充分发挥学生的学习主动性,学生在兴趣盎然的操作中,把抽象的数学知识变为活生生的的动作,自然而然的让学生从“要我学”变成“我要学”。有的学生根据自己的学习经验想到了数格子的方法;能力较好的学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。
2.“学生是学习的主人,把课堂的时间交还给学习的主人”这是新课标在提倡的重点。是的,学生学习,教师是不能替代的,只有让学生在动手操作和交流地碰撞中。学生才能真正理解和掌握这种抽象的公式。因此,在展示学生的活动方法时,我有意识地先展示数格子的方法,当学生介绍完数法后,有的学生马上发现,先移后数的方法更快的得到这个平行四边形的面积,其实,在这里,学生已初步体验的“剪”和“拼”方法了。所以我紧接着展示学生的剪拼法。在学生的汇报中,我大胆放手,让学生根据自己的学习经验进行汇报,充分发挥学生的想象力,同时培养学生的创新意识。
“授人以鱼,不如授人以渔”,这句话不错,教给他们知识,不如教给他们学习的方法。所以,在“平行四边形的面积”这一课的教学中,我不仅仅是让学生掌握平行四边形面积的计算公式,更重要的是让学生在活动中积累基本的活动经验,让他们在经验的积累中感受、理解、掌握数学中“转化”的思想方法,为今后学习其他图形的面积奠定基础。如在学生上台汇报:将平行四边形转变成长方形时,我适时讲解“像他们这样,把没学过的知识变成已学过的知识,从而解决问题,这就是数学中的“转化”思想。并提醒学生,在今后的学习中,我们也可以像他们这样,利用转化的的思想,将没学过的知识转化为已学过的知识来解决。
学生的思考能力是有差异的,所以我在整体把握教学内容的基础上,设计了梯度练习。首先是基础性的练习,让学生利用所探究出来的公式求平行四边形的面积;接着是提高性的练习,既设计多余信息的练习,让学生的思考力得以生长。当学生看懂了平行四边形可以转化为长方形来思考,真正理解了“底乘高的原理时,我又创设一个反例练习,既在黑板上将一个活动的长方形框架拉成平行四边形,然后问学生:“长方形的面积和平行四边形的面积相等吗?”这时,学生受思维定势的影响,都一致认为“相等”。当我利用课件展示两个图形的平面图时,一部分学生根据已有的学习经验(即将平行四边形右边斜出的部分剪下,平移到左边拼成长方形,)而改变了意见。此时,我质疑学生:“为什么刚才把平行四边形转化成长方形,它们的面积相等。而现在把长方形的框架拉成平行四边形时,它们的面积却不相等呢?”然后再利用活动框架让学生直观地了解到:当我们把长方形框架拉成拉成平行四边形时,它的面积会越来越小,是因为平行四边形的高越来越短的关系。从而让学生理解“等积变形”的转化与“变与不变”之间的区别。最后我再通过两题判断题让学生充分理解,平行四边形的面积不仅与它的高有着密切关系,同时也与它的底有着密切的关系。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾。
(1)由于是送课下乡的活动,我对该班学生的学习情况了解不够。因而在学生的动手探究时,多数学生对学习记录卡的填写不熟悉。由此在这个环节花掉的时间超过我预设时间近十分钟。然而让我欣喜的是在学生交流汇报的环节,一部分学生的思维活跃,语言表达能力非常好,从而凸显出本课设计的精彩之处,以致于让听课老师不会因超时而不耐烦。同时也让我意识到,在今后的教学中,应对学习卡的设计慎之又慎。
(2)阶段性小结的重要性。适当的课堂小结可以帮助学生理清知识结构,掌握内在联系,对促进学生构建自己的知识体系,有很大的帮助。因此,在学生获取一个新的知识点后,教师应及时做个阶段性的小结。
幸运的我,相信在陈宏瑜名师的指导下,在我们团队的磨课中,会不断地改进,不断地进步,不断地创新,我们的课堂也将会更加精彩。
平行四边形的面积教学设计理念篇二十一
教学目标:1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括能力,发展学生的空间观念。
教学过程:
一、导入。
1、用数方格的方法计算面积。
(1)我们已经知道可以用数方格的方法来得到一个图形的面积,请大家拿出你准备好的方格纸,用数方格的方法来数出方格纸中平行四边形和长方形的面积。(说明要求:一个方格代表1平方厘米,不满一格的都按半格算)把数出的数据填在方格纸的下面。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?(平行四边形与长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。
(1)拿出你准备好的平行四边形和剪刀,自己想办法把平行四边形变成一个长方形。
(2)请学生演示剪拼过程及结果。教师演示剪--平移--拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请大家观察,拼出的长方形和原来的平行四边形,你发现了什么?同桌互相说一说,可围绕以下3个问题讨论:
(4)同学交流,教师归纳相机板书。
(5)观察面积公式,要求平行四边形的面积必须知道哪两个条件?
s=ah(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?(渗透转化思想)。
三、巩固和应用。
1、出示例1,读题并理解题意。学生试做,交流做法和结果。
2、强调用公式计算的格式,s=ah=6*4=24(平方米)。
3、练习,82页1、2。
4、一块平行四边形钢板,底是15米,高是底的1。2北,这块钢板的面积是多少?
5、82页3。
6、出示两个同底等高的平行四边形,让学生讨论:面积相等吗。为什么?
四、小结:通过本堂课的学习,你有哪些收获?对于。
s=ah。
教学反思:1、数方格的方法有些学生忘了,课前铺垫不够好,有些耽误时间了。
2、对于学生动手操作过程中个别人出现的错误情况,如,把平行四边形多出的部分剪掉变成了长方形,因怕耽误时间,没能让他展示,并纠正。
3、让学生观察拼出的长方形与平行四边形有什么关系时,问题设计不好,学生不知道如何回答,因此耽误了时间,以至与后面习题做的也比较少。
平行四边形的面积教学设计理念篇二十二
教学内容:
课本第73-74页练习十七第4-9题。
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习。
(1)底12米,高是7米;
(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;
(4)底0.24分米,高0.5分米。
4、出示课题。
二、新授。
1、补充例题。
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
a900×(125×24÷10000)。
b900÷(125×24)。
c900÷(125×24÷10000)。
2、(略)。
三、巩固练习。
练习十七第6、7题。
四、课堂作业。
练习十七第8、9题。