三角形的面积教学设计一等奖大全(16篇)
总结是提高自己的必经之路,它可以让我们更加深入地认识自己,优化自己的行动策略。总结可以帮助我们更好地管理时间和资源。以下是小编为大家整理的一些优秀总结范文,供大家参考和学习。
三角形的面积教学设计一等奖篇一
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
3、培养学生动手动脑及分析推理能力。
重点难点:
教学准备:
导学过程。
一、复习。
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。
二、新知。
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。
(4)汇报结论(清楚明白的给小组加优秀10分)。
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。
三、知识运用(课件出示练习题,生解答)。
1、填空。
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断。
(1)一个三角形中最多有两个直角。()。
(3)有一个角是60的等腰三角形不一定是等边三角形。()。
(5)直角三角形中的两个锐角的和等于90。()。
四、拓展探究。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
三角形的面积教学设计一等奖篇二
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
教学难点:
教具学具准备:
教材与学生。
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)。
(3)把你没有想到的方法动手做一次。
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示。
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示。
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现。
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
[回答可能有二]:
(一种全部说是:)。
师:请问,你们是怎么想的,为什么这么认为?
生:……。
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。
(一种有一部分同学说是,有一部分同学说不是:)。
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。
(二)动手操作,探究新知。
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)。
生:……。
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)。
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5分钟。
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)。
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)。
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击flash:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)。
生:我们还用了折的方法(生介绍方法)。
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击flash:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)。
生:是个平角。180度。
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识。
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)。
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)。
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)。
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形的面积教学设计一等奖篇三
教学内容:人教版义务教育课程标准实验教科书五年级上册第84—86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境,揭示课题。
(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。
二、探索交流、归纳新知。
1.寻找思路:(出示一个平行四边形)。
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)。
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。
三角形的面积教学设计一等奖篇四
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了试一试,练一练的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】。
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】。
能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标:让学生体会几何图形内在的结构美。
【教学过程】。
一、情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为三角形内角和的大小爆发了一场激烈的'争吵。
钝角三角形大声叫着:我的钝角大,我的内角和一定比你们的内角和大。锐角三角形也不示弱:我的锐角虽然比钝角小,但我的内角和并不比你小。直角三角形说:别争了,三角形的内角和都是180。我们的内角和是一样大的。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)。
二、自主探究,验证猜想。
生1:能。我量出三角形的三个内角和度数,加起来是否接近180(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上1、2、3,以免在剪拼时把内角搞混了。)。
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了做数学的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)。
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单。
实验名称。
实验目的。
实验材料。
尺子。
剪刀。
量角器。
我的方法。
我的发现。
我的表现。
自评。
互评。
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形的面积教学设计一等奖篇五
(一)知识与技能:掌握“三角形内角和定理”的证明及其简单应用,让学生探索发现三角形的内角和是180。
(二)过程与方法:通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力,感受数学的转化思想;发展学生的空间观念和初步的逻辑思维能力;能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。
(三)情感态度与价值观:
1、渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神,及与他人合作交流的意识。
2、让学生切实感受到从实验中得到的现象,经过简单的推理证明以后可以成为我们的一般公理,初步感受从个别到一般的思维过程。
教学重点:
让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。
教学难点:
教学过程:
一、激趣引入。
1、画三角形。
2、画有两个直角的三角形。
二、探究新知。
60°+30°+90°=180°。
45°+45°+90°=180°。
1、小组合作完成。
2、汇报。
第一种:通过度量完成。
第二种:通过撕拼或者折拼完成。
第三类:通过长方形推算得出。
其他类。
3、小结:
(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,你们真不错,让我们带着自豪的语气大声地读出“三角形的内角和是180°”
4、知识升华:
三、实践检验。
2、老师不小心把墨水倒在了三角形上,你知道它的度数吗?
3、数学日记。
四、评价树。
你对自己的评价。
结束语:
数学是一棵大树,三角形只是它的一片叶子;
生活是一棵大树,数学只是它的一片叶子,
让我们欣赏着、享受着三角形为生活添得美!
三角形的面积教学设计一等奖篇六
三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。
在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。
1、经历三角形面积公式的推导过程,理解公式的意义。
2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。
4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。
理解三角形是同底(长)等高(宽)长方形面积的一半。
一、导入阶段。
通过故事情景产生生活中三角形比较大小的问题:
2、采用哪些方法可以比较呢?
小结:运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?
二、探究阶段。
(一)画三角形。
1、每个学生拿出准备好的长方形纸,按要求画三角形。
操作说明:
(1)以长方形纸的一边作为三角形的底边。
(2)以对边的任意一点作为三角形的顶点。
(3)连接顶点与对面的两个角。
(4)你画了一个什么样的三角形?
2、大组交流。
4、观察已画三角形与长方形之间的特殊关系。
(二)实验。
1、剪拼三角形。
操作说明:
(1)剪下你所画的三角形。
(2)将剩下部分拼到剪成的三角形中。
思考:剩下部分拼成的三角形是否与剪成的三角形一样大?
(3)填写实验报告。
2、学生完成报告后交流。
(三)归纳。
根据学生的实验得出结论:
(1)请学生用一句话来概括。
(2)用数学的方式来表示:三角形面积=相应长方形面积/2。
(3)根据长方形的面积公式,推导三角形的面积公式。
三、运用阶段:
1、教学例1。
(1)分别测出3个三角形的底与高,作好记录。
(3)交流。
拓展:找出下列图形中面积相等的两个三角形,为什么?
四、总结。
这节课我们学习了什么?2、计算三角形面积要知道那些条件?
三角形的面积教学设计一等奖篇七
一、练习
二、总结一、第5题
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。
三角形的面积教学设计一等奖篇八
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
一、教学目标。
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的'联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
二、教学重点和难点。
难点:对不同验证方法的理解和掌握。
三、教学过程。
(一)质疑――发现问题,提出问题。
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)。
你有什么办法验证这一结论呢?(动手操作,寻找答案)。
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)。
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
(二)探究――分析问题,解决问题。
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
(三)归纳――获得结论。
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
(四)拓展――巩固练习。
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
三角形的面积教学设计一等奖篇九
《义务教育课程标准实验教科书。数学》(西师版)五年级第九册。
(1)使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积。
(2)通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念。
(3)使学生明白事物之间是相互联系,可以转化和变换的。
(1)导入新课时激励学生求新知——诱导自主学习。
(2)探索新知时鼓励学生自学尝试,合作讨论——进行自主学习。
(3)内化新知创新设疑,讨论质疑——创新自主学习。
(4)巩固新知时激励学生自主解答,讲解思路——巩固自主学习。
(5)教师课前准备:多媒体计算机课件,为学生每组准备两个完全一样的直角三角形、两个完全一样的等腰直角三角形,和两个完全一样的钝角三角形。
本课教学总时间为40分钟。教学过程主要围绕三角形面积公式的推导、应用来展开的。教学环节可分为情境创设、操作交流、练习反馈和全课总结。
三角形的面积教学设计一等奖篇十
师:同学们,我们已经学习了平行四边形的面积公式,今天这节课我们要学习三角形的面积计算。(教师板书:三角形的面积计算)。
现在我们手上有一个三角形,(教师出示三角形)有没有办法知道它的面积呢?(学生顿时在下面议论纷纷)请拿出你们课前准备的三角形、方格纸、剪刀,每个同学可以利用你们手上的这些学具和工具,四个同学一组进行讨论,用什么办法可以求出你手上的三角形面积。
(学生熟练地四人围成一组,有一组同学刚围成一组,就急着在猜测答案:“这个三角形面积是24平方厘米。”“不对,是18平方厘米。”“这也不对,好像是12平方厘米”“我们把它放在方格纸上数一数,看看到底是多少?”另一组同学却十分安静地在议论:“把这个三角形剪开来,一小块一小块计算。”“但剪出来还有小三角形怎么办?”“这个办法也不行,那怎么办?”“我有一个办法,把它拼成平行四边形。”“怎么拼呢?”还有一组同学把三角形摆来摆去。“把它与平行四边形比看。”大约3分钟后,教师在巡视各组同学们的讨论后,发现有5组同学已经找到了答案,还有3组同学还在讨论。)。
师:同学们,刚才我在巡视时,已发现有5个小组同学已经知道了三角形的面积,现在我们一起来讨论。
师:你们是怎么知道这个答案的?
生:我们把这个三角形放到平行四边形的上面,发现它的面积是平行四边形的一半。(学生边说,边演示给大家看。如图2―3)。
图2―3。
师:你们怎么知道三角形的面积是平行四边形面积的一半呢?
生:我们刚才把平行四边形沿着对角线剪开,然后把它们叠放在一起,正好能重合。
师:这组同学说得好,答案是12平方厘米。那么还有不同方法吗?
生:我们小组有个简单办法,只要把三角形放在方格纸上,马上就可以数出这个三角形的面积。
师:那么请你在投影仪上演示一下。
生:(走到讲台边的投影仪旁,将方格纸放在投影仪上,然后放上三角形。如图2―4)因为每小方格代表1平方厘米,不满一格的都按半格算,所以我们数出来一共是12格,也就是12平方厘米。
图2―4。
师:这组同学是通过数方格得到答案,还有不同的方法吗?
生:我们小组的方法与上面二组同学不同。我们是把这个三角形剪开来,拼成一个平行四边形。(拿着剪拼的图形进行演示。如图3―5)。
图2―5。
师:那你们怎么知道剪下来的三角形一定可以拼成平形四边形呢?
生2:我们开始剪的时候,也发现拼不成平形四边形,后来剪了几次,发现只要沿着中间的一条线剪,就可以拼成平行四边形。
师:这个小组的办法不错,还有不同的方法吗?
生:我们小组也是数出来的,开始把三角形放在方格纸上,发现数不准确,有好几个答案。后来知道要把三角形的底边的两个顶点与方格纸内的小正方形顶点对齐,就数出12格。
生:在这些方法中一共有两种思路,一种是数格子,还有一种是把三角形转化成平行四边形。
师:说得好。虽然刚才有很多种不同的方法,但把这些方法整理一下,我们就可以发现这些方法的基本思路是两种:一种是数格子,通过一格一格地数,知道了三角形的面积;还有一种是转化成平行四边形,通过计算平行四边形的面积,再得出三角形的面积。
〖案例点评〗。
在本案例中,教师创设了一个学生自主探索三角形面积的平台,课前教师请学生准备了一些三角形、平行四边形、方格纸与剪刀等工具,然后向学生提出了具体的探索要求――计算手上三角形的面积。从课堂学生的表现来看,由于教师放手给学生进行探索,因此,他们探索的各种途径也是不同的,有的通过数格子获得面积,有的通过拼图知道面积,也有的通过剪拼后得到面积,这充分说明,只要放给学生进行探索,相信学生会有能力完成。
〖思考与讨论〗。
三角形的面积教学设计一等奖篇十一
2、通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
1、若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、每个学生准备一个长方形、两个平行四边形,一把剪刀。
2、解决方案:
师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)。
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
(一)实验一:剪。
1、师:下面让我们做几个实验,好不好?
(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)。
2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)。
(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)。
师:重合了,在数学上叫“完全一样”(板书:两个完全一样)。
师:现在你能用“完全一样”说一说我们剪到的`三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)。
学生演示重合过程,课件演示剪、重合的过程。
师:谁能说一说根据刚才的实验,你想到了什么?
小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。
(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)。
师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。
说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)。
三角形的面积教学设计一等奖篇十二
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全。
部工作量的多少?
2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成。
全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
阅读教科书第18页中的问题6。
分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)。
[先要求出师傅与徒弟各完成的工作量是多少?]。
师傅完成的工作量为=,徒弟完成的工作量为=。
所以他们两人完成的工作量相同,因此每人各得225元。
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现。
由甲独做10小时;
请你提出问题,并加以解答。
例如(1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之。
间的关系,即工作量=工作效率×工作时间。
工作效率=工作时间=。
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
教科书习题6.3.3第1、2题。
三角形的面积教学设计一等奖篇十三
教学理念:
数学学习不应是简单的个体受动过程,更是一个主体对自己感兴趣的且是现实的生活性主题的探索与发现的过程。而这种探索与发现过程,就是儿童自己去观察,思考,讨论,试验,亲身体验了知识的建构过程,使其终身收益。
教学目标:
1.通过练习使学生进一步熟悉三角形的面积的计算公式,能够比较熟练地计算三角形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3.多元评价学生,并培养学生初步的几何知识。
教学重点与难点:
学生难灵活三角形面积公式。在学习时可借助方程的知识解决问题。
媒体与手段运用:
多媒体。
教学环节:
一、复习阶段。
1、出示。
问:这是一个三角形,要求它的面积必须知道什么?(学生回答后指名到黑板前量出这个三角形的底和高。)。
问:知道了三角形的底和高,怎样求也它的面积?用哪个公式?(学生回答后教师板书:s=ah2)。
二、新授内容。
1、出示练习十四第7题。
(1)教师讲解,学生试做。
(2)让学生尝试用方程完成。
2、练习十四第6题(学生读题,并请同学讲讲自己的思路。)。
教师提醒学生在求三角形面积时要注意除以2。
3、练习十四第9题。(学生试做)。
分析题意,学生注意单位之间的转化。
4、讲解等底等高的三角形面积相等。
5、把一个三角形分成四个面积相等的三角形,可以怎么分?
学生自己先试分,然后上台反馈答案。
三、巩固练习。
课后做一做。
学生在做的过程中,注意面积单位。
四、总结。
今天我们学习了三角形面积计算公式,我们是通过转化的方法来推导出。这种方法在今后还可以多次进行运用。
三角形的面积教学设计一等奖篇十四
1、在讨论、操作等活动中,帮助幼儿认识三角形。
2、诱发幼儿对图形的兴趣和积极投入的态度。
【活动准备】。
六幅三角形的图案,若干长短不一的纸棒。
【活动过程】。
一、情境导入:
师:今天老师带来了一个新朋友,你们看它是谁?(教师出示三角形图片)(幼:三角形)。
师:你还在哪里看到过三角形?(幼:屋顶、积木……)。
师:我们小二班里有没有三角形宝宝的?
二、感知三角形:
师:三角形宝宝十分的调皮,它很喜欢和小朋友捉迷藏,你们看看它躲在哪里?(教师出示六幅有三角形的图案,与幼儿一同寻出隐藏的三角形)。
师:这里有这么多的三角形宝宝,现在老师要给小朋友们变出一个三角形出来。小朋友们看纸上有什么?(三个点)。
师:现在老师要用这三个点变出一个三角形出来。三个小点是好朋友,它们要手拉手。(教师将三点连接)。
师:你们看到老师是怎么把三个点变出一个三角形的?(用线将三点连起来)。
师:那小朋友们猜猜看如果三个小点排成一条直线能不能变出三角形宝宝的呀?(教师将点一直线排列)教师根据幼儿猜测进行实验证明。
师:小朋友看看这些图案里的三角形和老师变出来的三角形有什么一样的地方?(引导幼儿观察三角形的共同特征,发现三角形有三条边、三个角)。
教师小结:三角形的共同特点:三角形宝宝都有三条边,三个角,而且如果小朋友也想和老师一样想用三个小圆点变出三角形宝宝,就不能让小圆点宝宝们站在一条直线上。
三、幼儿操作:
师:现在老师要请小朋友们来做魔术师,老师这里有长短不一样的小木棒,请小朋友们来帮助这个三角形宝宝变出另外一个三角形宝宝出来。
师:小朋友们给三角形宝宝找到了这么多的朋友,它可开心了。三角形宝宝说:我有这么多的三角形朋友,可我也想和小二班的小朋友做朋友,小二班的小朋友可不要忘记“我”。
师:小朋友们会不会忘记三角形宝宝呀?来给三角形宝宝说说看它是长什么样的?(引导幼儿再次记忆三角形的特征)。
【活动反思】。
本次活动目标基本完成,幼儿对于三角形的认识更加深刻。动手操作环节幼儿积极性高,三角形形状也完整。本次活动需要改进的地方是:
1、在幼儿指出图片中三角形时,教师应该及使用笔标记出来,并可做一些语言引导,帮助幼儿初步认识三角形。
2、用点画三角形时可以让幼儿自己先动手,在进行活动,不同的操作环节有助于帮助幼儿提高兴趣,加深印象。
三角形的面积教学设计一等奖篇十五
说课的内容是三角形的面积。三角形面积的计算是义务教育课程实验教材第九册第五单元多边形面积的计算中的第二节。这部分内容是在学生掌握了三角形的特征,以及长方形、平行四边形面积计算的基础上教学的。教材的编排加强了学生的动手操作,如求三角形的面积,让学生用两个完全一样的三角形拼摆已学过的图形。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索研究的图形与已学过的图形之间有什么联系,从而找出面积的计算方法,而不是直接把公式告诉学生。这样既使学生在理解的基础上掌握了三角形面积计算公式,又培养了学生的思维能力和动手操作能力。教材中的插图给出了转化的操作过程,同时渗透了旋转和平移的思想,以便于学生理解公式的来源。
基于以上认识,按照新课程理念,我确定了以下教学目标:
1、认知目标
经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标
通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、情感目标
在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:
1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。
2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。
本节课在学习方法上我侧重以下几点:
1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。
2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。
3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。
针对上述内容的需要,我设计了如下的教学程序:
一、创设情景,引入探索
师:在讲课之前,首先,谁愿意给大家说一说,你有什么爱好?
生:我喜欢
(引导学生可以先求长方形面积,再算它的一半就可以)
那么如果遇到花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)
二、自主探索,合作交流。
1、引导学生看大屏幕(出示不同类型的三角形),提出思考:谁来说说你看到了什么?
3、谈话启思。
请大家运用老师提供的素材,自行确定研究方案,希望同学们发挥自己的想象,可以拼,还可以摆。小组里的同学可以互相合作、讨论,看哪一些小组能找到三角形面积的计算方法。
4、操作探索。
(1)小组合作探索、操作。
(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)
5、开始现场发布会,展示学生的拼摆情况。
师:同学们,方法找到了吗?哪个小组上来汇报?
师:,说得非常好!我们一起来看看电脑博士是怎么说的?(课件演示整个重合旋转平移的过程,并说出推导过程)。关于其他的三角形,哪个小组还有新的发现?好,你们小组来。
生:我们用的是两个完全一样的钝角三角形,也可以拼成一个平行四边形,
推导过程跟上一组一样,我们的结论是钝角三角形的面积=底高2
师:好的,我们来看一下电脑里有没有这种方法?(课件演示)你们的方
法也很好。
生:我们小组是用两个完全一样的直角三角形也可以拼成一个平行四边
形,我们的结论是直角三角形的面积=底高2
生:我们小组用的同样是直角三角形,但我们拼成的是一个长方形。这个
师:好,同学们你们真了不起!找到了这么多的方法。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形可以拼成一个平行四边形。
板书:平行四边形的面积=底高
三角形的面积=底高2
如果用字母s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?(板书:s=ah2)
三、尝试练习
1、估算红领巾的长是多少,高是多少,计算红领巾的面积。(确定底是100厘米,高是33厘米学生自主练习,最后小结课件出示结果)
2、计算标志牌的面积
(课件出示标志牌图,在学生算出面积之后,引导思考:为什么不用3乘以2.5来算它的面积)
引导小结:在求三角形面积时,底与高是一一对应的关系,对应的底乘以对应的高再除以二才是三角形的面积。
四、巩固练习
认识交通警示标志牌,引导计算制作两块标志牌所用的铁皮?
(课件出示题目)
3、评价体验。
师:你们通过自己的努力找到了三角形面积的计算方法,老师也为你们
生:愿意!
五、实践运用,拓展创新。
下图中哪个三角形的面积与画阴影三角形的面积相等?为什么?
你能在图中再画一个与画阴影的三角形面积相等的三角形吗?试试看?
六、质疑调节,总结延伸。
师:通过这节课的探索学习,你有什么收获?
生:我们知道了三角形的面积计算方法,还会用它来进行计算。
生:这节课我们通过自己动手动脑得出来了三角形的面积公式,我真是太高兴了!
七、布置作业,课后探索。
三角形的面积教学设计一等奖篇十六
教学内容:人教版义务教育课程标准实验教科书五年级上册第84—86页。
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:
一、创设情境,揭示课题。
(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)。
二、探索交流、归纳新知。
1.寻找思路:(出示一个平行四边形)。
师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)。
(2)观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)。
三角形面积与原平行四边形的面积有什么关系?
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)。