设计与应用教案(模板20篇)
教案的编写要注重语言表达的准确性和条理性,清晰地传达教学意图。教案的内容应紧密结合学生的实际生活和学习经验,以增强学习的实效性和可操作性。希望大家在编写教案时能尽量充分发挥自己的创造力和想象力。
设计与应用教案篇一
一、看图填算式。
(1)上图有组和()组。
可列乘加算式:()×()+()=()。
(2)上图有()组再填上()个就可。
以凑成再加上原来的()组后,
凑成()组。由于开始我们凑上了一个。
所以最后还要减去一个。
可列乘减算式:()×()-()=()。
二、改写算式。
()×()+()=()。
4+4+4+2=()。
()×()-()=()。
()×()+()=()。
5+5+5+3=()。
()×()-()=()。
三、有多少个球?你能分别列一道乘加、乘减算式吗?
()×()+()=()。
()×()-()=()。
设计与应用教案篇二
教学内容:课本第9页例4,练习三1~5题。
教学目的:使学生掌握分数加、减、乘混合在一起的算法。提高计算的熟练程度。
教学重点:
教学难点:
教学过程:
一、复习。
1.分数乘以整数的意义?
2.一个数乘以分数的意义?
3.分数乘法的计算法则及其计算方法。
5.计算。
5×6+7×315×(34-29)。
二、新授。
问:最后两题的运算顺序怎样。
(第一题先算乘法,再算加法;第二题先算括号,再算乘法)。
说明:如果我们将那两道题的整数改为分数,它们的运算顺序也是不变的。按照同样的方法算一算下面的题目。
出示例6。
问:这两道题的运算顺序是怎样的?(学生回答后独立完成。让两名学生到黑板上做。)。
板书:
三、巩固练习。
1.课本12页做一做。
2.练习三1~5题。
教学反馈:
设计与应用教案篇三
教学目标:
1、通过小动物们重建家园的情境中的信息,探索乘加、乘减两步计算问题的解题思路。
2、培养学生们提出问题和综合应用知识解决问题的能力。
教学重难点:探索解决乘加、乘减两步计算问题的解题思路。
教学准备:多媒体、学具等。
信息:
1.每次搬4块,已经搬了5次,还剩24块没搬。
2.共有16只小兔,每4只小兔住一间房,已经建好3间。
学生:准备:本子,笔,学具。
教学过程:
活动一:谈话导入、提出问题。
师:上节课,我们知道森林里发生了水灾,小动物的家被洪水冲垮了。他们在忙些什么呢?这节课我们一起去看看。
(课件出示信息图)谁能说说小动物们在干什么呢?
师:请同学们仔细观察画面,你发现了哪些数学信息?
师:这么多数学信息,主要说了哪几件事?
关于小熊搬砖盖房子的信息都有哪些呢?(每次搬4块,已经搬了5次,还剩24块没搬)这位小朋友信息找得很准确,谁能把小熊搬砖的信息再大声说一遍呢?关于小兔盖房子的信息又有哪些呢?谁能把小兔子盖房子的信息再大声说一遍?师边指边说:信息经过这样分类整理,是不是就更清楚了呢?当遇到信息较多时,我们就应该像刚才这样把信息进行分类整理。
我们一起读一读小熊搬砖的信息,想一想根据这些信息你能提出什么数学问题?一共有多少块砖?这个问题有点难,今天这节课我们就来解决这个问题。
活动二解决问题。
同学们看这个问题你们会解决吗?先在练习本上试着做一做!
同学们在小组里交流一下自己是怎么想的,怎么做的?
老师发现很多小组的同学讨论好了,哪个同学愿意代表小组交流一下?
实物投影:生交流算式:45=20,20+24=44。
师:能和大家说说你是怎么想的吗?
还有哪个小组有不同做法想下来交流?
您现在正在阅读的《乘加、乘减两步计算应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《乘加、乘减两步计算应用题》教学设计(45+24=44(块),他列出了综合算式。能和大家说说你是怎么想得吗?这种做法我们以后还会学习,今天先不研究,这节课我们主要学习分步算式。
刚才我们小朋友交流了自己的不同做法,可不管哪种做法,大家的想法都是一样的,都是先根据每次搬4块,已经搬了5次。求出已经搬了多少块砖,再根据已经搬的砖和剩下的砖合在一起,求出一共的.砖。来,我们一起来解决这个问题。第一步算式是,生答师板书:
45=20(块)。
20+24=44(块)。
同学们看,刚才我们先用乘法求出已经搬的砖又用加法求出一共多少块砖,这就是今天要学习的乘加两步计算。
活动三:解决问题2。
师:同学们帮小熊解决了搬砖的问题,小兔子着急了,说:快来帮我们吧!
还有几只小兔没有房子住?
请同学们试着在练习本上做一做。
做完的同学想一想自己是怎么想的,怎么做的。
下面同桌之间交流一下自己的想法和做法?
哪位同学愿意起来交流一下自己的做法?
板书:34=12(只)。
(生交流,师板书,能和大家说说你是怎么想的吗?)。
你现在明白了吗?自己改正一下。
小结:同学们看,刚才我们帮小兔解决问题,先算乘,再算减,这就是乘减两步计算问题。板书课题。
四、巩固练习。
小猴摘桃。
活动四:
课堂总结:老师发现咱班同学真了不起,不但会动脑思考,还很善于交流,相信同学们在以后的学习中表现更棒。
设计与应用教案篇四
(一)教材地位:
本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在。
学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。
(二)教学重点:
2、能根据问题中的已知条件确定反比例函数解析式;
3、能判断一个函数是否为反比例函数及比例系数;
4、培养学生的观察、比较、概括能力。
(三)教学重学:
2、能根据已知条件确定反比例函数解析式。
(四)教学难点:
2、能根据已知条件确定反比例函数解析式。
二、分析教法与学法:
(一)教法:
(二)学法:
通过观察、比较、发现、概括的方法来学习新知识。
三、分析教学过程。
(一)创设情境:教育大全。
1、由于学生所学过的反比例关系,一次函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以以有知识的记忆。
2、在情境中,列举大量实例,让学生装根据已知条件,列出一次函数、正比例函数、反比例函数为学生的探险索创造条件。
(二)探索过程。
1、学生的探索能力不是很强,因此在列出的'大量函数中,教师发挥主导作用,启发学生思考。
2、通过一系列的探索,让学生概括出反比例函数的共同特征,从而给出概念。
3、在学生得出反比例函数后,再进行深化,给出比例系数为负数或分。
(三)小结和作业:
在学生的自我小结中教师加以完善,对反比例函数有一定程度上的掌握。
设计与应用教案篇五
这节课是在学生掌握了反比例函数的概念及其图像与性质的基础之上而学习的,并且上学学习了正比例函数和一次函数,因此学生已经有了一定的知识准备,但是由于学生的知识所限,对于例题中的信息并不了解,这样容易造成学生在了解上的困难,所以在教学时我选用了学生所熟悉的实例进行教学。使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感,另外对于本节的问题,文字多,阅读量大,所以我应用幻灯片的形式展现,效果要好,注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识解决实际问题,本节课效果较好。
设计与应用教案篇六
使学生掌握的计算方法,能正确计算式题。
鼓励学生独立思考,选择合适的算式,培养创新意识。
教学准备。
cai课件。
教学过程。
创设情景。
问题:他们一共养了多少条金鱼?
探究。
讨论:要知道鱼缸里一共有多少条金鱼?你是怎么知道的?
交流:
把每个鱼缸里金鱼的条数加起来就可以了(4+4+4+2)。
拓展。
你还有其他方法列式吗?(引导学生发现如果把第4个鱼缸也看成有4条金鱼可以列出乘法算式)。
根据学生回答板书:4×4-2。
问:4×4表示什么?为什么要减2。
归纳。
师:在一个算式里,有乘法又有加法,或有乘法又有减法,应先算乘法,再算加法或减法。
应用。
教材第78页第1、3、4题。
第1题,你是怎样列式的?3×4+1=13。
第3题,左边有题一共有几人?怎样列式?
课堂作业。
教材78页第2题。
设计与应用教案篇七
应用题是指将所学知识应用到实际生活实践的题目。在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。下面是七年行程应用题及答案请参考!
1.甲、乙二人以均匀的速度分别从a、b两地同时出发,相向而行,他们第一次相遇地点离a地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距b地3千米处第二次相遇,求两次相遇地点之间的距离。
所以两次相遇点相距9-(3+4)=2千米。
所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在p点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个p点到第二个p点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到b地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)。
解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。
解:画示意图如下。
第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了。
3.5×3=10.5(千米)。
从图上可看出,第二次相遇处离乙村2千米。因此,甲、乙两村距离是。
10.5-2=8.5(千米)。
3.5×7=24.5(千米),
24.5=8.5+8.5+7.5(千米)。
就知道第四次相遇处,离乙村。
8.5-7.5=1(千米)。
答:第四次相遇地点离乙村1千米。
设计与应用教案篇八
学习目标:
1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:
1、如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
2、解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:
如何从实际问题中寻找等量关系建立方程。
学习指导:
一、知识准备。
1、通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。
2、谈一谈:
请举例说明打折、利润、利润率、提价及削价的含义分别是什么?
3、算一算:
(1)原价100元的商品,打8折后价格为元;
(2)原价100元的商品,提价40%后的价格为元;
(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课。
一)思考:
1、把下面的“折扣”数改写成百分数。九折八八折七五折。
2、你是怎样理解某种商品打“八折”出售的?
二)问题:
1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?
3、你是怎样理解商品的利润?
三)新知探讨。
1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?
2、结合实际,说说你从打折销售中可以获得哪些数学问题?
(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?
(2)一种画册原价每本16元,现在按每本11。2元出售。这种画册按原价打了几折?
如果设每件服装的成本价为x元,根据题意,
(1)每件服装的标价为:()。
(2)每件服装的实际售价为:()。
(3)每件服装的利润为:()。
(4)列出方程,并解答:
四)回顾与反思。
设计与应用教案篇九
执教人:上海市兴陇中学李炯。
教学目标:利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。
重点难点:知识的综合灵活应用。
情感目标:激发学生创新思维,培养学生解决问题的能力。
教学过程:
(一)复习:
(二)正课:
本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。
将本文的word文档下载到电脑,方便收藏和打印。
设计与应用教案篇十
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点。
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点。
掌握分数连除应用题的结构及数量关系。
教学过程。
(一)复习。
(投影)。
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)。
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课。
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)。
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)。
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)。
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)。
老师板书:
解设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)。
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习。
(投影)。
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)。
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是()厘米。设()为x。
果树有多棵?
(四)课堂总结。
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)。
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)。
(五)布置作业。
(略)。
课堂教学设计说明。
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
设计与应用教案篇十一
我们这堂课主要有五个特色:
1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
一、学而时习之。
二、新课当旧课上。
三、重视引导学生再创造、再发现。
b组训练题较a组灵活,适用于学有余力的学生。
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。
四、突出学习的速度、角度、强度和反思。
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
五、创设情境,让学生主动积极参与。
设计与应用教案篇十二
教学内容:本课时的教学内容是百分数及百分数的应用。
教学目标:
知识与技能。
进一步理解百分数的意义,巩固求百分率的方法,掌握百分数与分数、小数的互化方法。
能应用百分数的相关知识,解决简单的实际问题。
过程与方法。
通过小组合作学习,交流探究等活动,增强合作学习的意识。
经历回顾、梳理、反思所学知识的过程,加深对复习内容的理解。
情感、态度与价值观。
在学习活动中,激发探究欲望,养成善于回顾和反思的学习习惯。
体验数学与生活的密切联系,增强应用数学知识解决实际问题的意识。
难点:掌握关于“增加百分之几”和“减少百分之几“的实际问题的解题方法。
教学设计:通过复习,系统、全面的整理了本学期所学的百分数知识,帮助学生构建合理的知识体系,使学生更好地理解和掌握所学概念、意义和解题方法,进一步培养学生的数感,提高学生的解题能力。本节课对百分数及百分数的应用的相关知识做了系统的复习,只要体现在以下两点:
1、突出核心知识,围绕重点展开复习和训练。
本课时的复习紧紧围绕百分数的认识及应用百分数解决实际问题这两方面内容,引导学生通过回顾、交流,进一步巩固对百分数的认识和运用百分数解决实际问题的方法,以“抓重点,带相关”的复习方式展开训练,提高学生的解题能力。
2、注重知识间的内在联系。
加强知识间的内在联系,帮助学生构建合理的知识体系,本节课通过对比血虚,进一步明确了百分数的意义和百分数应用题的解题思路,提高了学生的审题能力,使学生能够根据不同的要求,灵活选择不同的解题方法。
3、数形结合,为以后的学习打下基础。
设计与应用教案篇十三
_____________________________________。
2.桶里装有一些油,用去了60%,恰好是48千克,原来桶里装有多少千克的油?
_____________________________________。
3.一条绳子长48米,剪去全长的75%,还剩多少米?
_____________________________________。
4.一条绳子,剪去全长的.75%,还剩下12米,原来绳子长多少米?
_____________________________________。
5.生产车间上个月制造零件1280个,本月比上月超产15%,本月制造零件多少个?
_____________________________________。
6.生产车间本月制造零件1472个,比上个月超产15%,上个月制造零件多少个?
_____________________________________。
7.小丽身高126厘米,正好是父亲身高的70%,父亲身高多少厘米?
_____________________________________。
_____________________________________。
_____________________________________。
_____________________________________。
设计与应用教案篇十四
应用题教学是培养学生分析问题和解决问题的一个非常重要的手段。但应用题阅读量大、建模难度高,学生往往无从下手。在教学中,我发现教师教的吃力,学生学的也很吃力,很多学生看见应用题就有一种说不出的恐惧感。于是在列分式方程解应用题的教学中,我试着运用表格分析法来进行应用题的教学,让学生有章可循,并取得了很好的效果。
一、教学案例展示。
分析:题中涉及工作量、工作效率、工作时间三量关系,甲、乙两种状态。根据题意,设乙每分钟能输入x名学生的成绩,则甲每分钟能输入2x名学生的成绩,用表格分析问题。
步骤一:列出表格。
步骤二:依次填写表格信息。
设计与应用教案篇十五
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想。
方法:通过将实际问题转化成数学问题,培养学生的建模思想;。
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系。
教学重点。
教学难点。
找出已知量与未知量之间的关系及相等关系。
教具资料准备。
教师准备:课件。
学生准备:书、本。
教学过程。
一、创设情景引入新课。
观察图片引课(见大屏幕)。
二、探究。
探究销售中的盈亏问题:。
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润。
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)。
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系。
三、探究一。
分析:售价=进价+利润。
售价=(1+利润率)进价。
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍。
获利10%,则该商品的标价为元.
注:标价n/10=进(1+率)。
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的。
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为元.
四、小结。
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断。
小组研究解决提出质疑。
优生展示讲解质疑。
五、作业布置:
板书设计。
相关的关系式:例题。
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
设计与应用教案篇十六
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。
(4)求出所列方程的解;。
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
设计与应用教案篇十七
_四年级数学教研组集体备课教学案例。
知识目标:
2、应用加法的运算定律,使一些小数计算简便.。
能力目标:
培养学生的抽象概括能力、迁移类推的能力.。
情感目标:
使学生感悟到数学源于生活,与生活的紧密联系。
教材分析:
教法:知识的迁移、对比法、尝试法等。
教学案例设计:
《小数的加法和减法》。
教学目标:
1.理解小数加减法的'意义,并掌握计算法则.。
2.运用法则和运算定律使学生能够比较熟练地笔算小数加、减法.。
3.培养学生的抽象概括能力,迁移类推能力.。
教学重点:
小数加、减法的意义和计算法则.。
教学难点:
理解“小数点对齐”的道理.。
教学步骤:
一、引子:
笔算:少先队员采集中草药,第一小队采集了3735克,第二小队来集了4075克.两个小队一共采集了多少克?(投影片1)。
读题,用竖式解答.(一人板演,其他人在本上做)。
说一说:整数加、减法的意义和计算法则.。
二、探究新知。
教学例1:(演示课件“小数的加、减法”)下载。
(一)小数加法的意义。
(1)教师提问:怎样列式?
(2)小组讨论:例1与复习题比较有什么相同的地方?有什么不同的地方?
(3)引导学生比较后说出:要把两个小队采集的千克数合并起来,所以要用加法计算.列式为3.735+4.075(板书)。
教师提示:小数加法的意义与整数加法的意义相同,也是把两个数合并成一个数的运算.(板书:小数加法的意义)。
(二)探究小数的计算法则。
小数加法又该怎样计算呢?(板书:计算)。
例1、3.735+4.075。
(1)结合整数的计算法则,先试述自己的思路,大家讨论。
(2)通过列式的过程理解小数加法的意义和证书加法的意义一样。
(3)学生试算3.735+4.075(一人板演,其他人在本上做)。
(4)教师提问:得数7.810末尾的“0”怎样处理?
引导学生说一说,用坚式计算3.735+4.075时,先做什么,再做什么,最后做什么?(有没有什么小技巧――小数点对齐,就是数位对齐)。
例2、计算12、03+0、875。
(1)大家商讨。
(2)试算,二个人在黑板上板书,老师也板书12、03。
+0、875。
(3)大家发表意见,总结小数的计算法则及计算技巧(小数点对齐、小数点对齐有什么意义?)。
(由整数加法类推学习小数加法,由直观到抽象,学生易理解、易掌握.再由迁移法对小数减法进行推导)。
2.教学例2:
出示例3(继续演示课件“小数的加、减法”)下载,
(1)引导学生观察比较:例2的条件和问题与例1比较有什么变化?
(2)通过列式,引导学生理解小数减法的意义和整数减法的意义一样。
(3)直接引导学生进行试算,二人板书,教师板书(错误的)。
(2)观察、总结小数减法的意义和计算法则,强调出小数点对齐的重要。
(3)延伸思考:教师提问:咱们把千克数改写成克数。
大家讨论,发表意见。
学生尝试:(一人板演,其他人在本上做),教师巡视指导.。
三、课堂练习:
1、个人班级aa制比赛(书写漂亮、计算正确)。
反馈练习:7.81-4.0750.4-0.375(一人板演,其他人在本上做.)。
练习:教材第113页上面的“做一做”的题目。
计算下面两题,并且验算.。
12.16+5.3470.4-0.125。
2、小组合作探究――教学例3。
2、出示例36.08+12.3+9.72=。
小组讨论:应该怎样计算?
3、每个小组推出一名学生板书。
4、集体订正。
3、计算器速算赛。
先发表如何使用计算器进行小数的加减计算。
速算赛:每人手拿计算器,老师和学生一起计算,老师一边说数,一边和学生一起输入计算,老师说答案,对的学生马上起立,再算再起立,如此反复。
四、全课小结。
这节课我们学了什么?谁能说到点子上?这节课你要嘱咐大家要注意什么?
五、布置作业(探究活动)。
《小管家》。
活动目的。
1.通过让学生小组活动,培养学生的交流、合作意识.
2.通过让学生记录家里一周的开支,使学生进一步熟悉用小数表示钱数的方法,巩固小数加减法计算.
3.通过让学生记录家里一周的开支,使学生进一步体会数学与现实生活的密切联系,了解数学在日常家庭生活中的应用,并从小养成勤俭节约的习惯.
活动准备。
结合自己家里,设计一个家庭一周开支记录.。
××家庭一周开支记录。
×年×月-----×月×日。
周一。
周二。
周三。
周四。
周五。
周六。
周日。
总计。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
-----。
-----。
-----。
-----。
-----。
-----。
-----。
-----。
-----。
小计。
小计。
小计。
小计。
小计。
小计。
设计与应用教案篇十八
2.理解算理,使学生学会计算定期存款的利息.。
3.初步掌握去银行存钱的本领.。
教学重点。
1.储蓄知识相关概念的建立.。
2.一年以上定期存款利息的计算.。
教学难点。
“年利率”概念的理解.。
教学过程。
一、谈话导入。
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.。
二、新授教学。
(一)建立相关储蓄知识概念.。
1.建立本金、利息、利率、利息税的概念.。
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.。
(2)教师板书:
存入银行的钱叫做本金.。
取款时银行多支付的钱叫做利息.。
利息与本金的比值叫做利率.。
2.出示一年期存单.。
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.。
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)。
4.出示国家最新公布的定期存款年利率表.。
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.。
(3)那什么是年利率呢?
(二)相关计算。
1.帮助张华填写存单.。
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)。
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结。
请你说一说如何计算“利息”?
三、课堂练习。
1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息。
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)800×11.7%。
(2)800×11.7%×2。
(3)800×(1+11.7%)。
(4)800+800×11.7%×2×(1-20%)。
四、巩固提高。
(一)填写一张存款单.。
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
五、课堂总结。
通过今天的学习,你有什么收获?
六、布置作业。
设计与应用教案篇十九
一、导入。
教师提问:
“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:
“为什么要把钱存入银行呢?”多让几个学生发表意见。
教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。
“你们知道利息是怎样计算的吗?”
教师:今天我们就来学习一些有关利息的知识。
板书课题:“利息”
二、新课。
出示例题:小丽1月1日把100元钱存入银行,存定期一年。到1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。
先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期―年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。
教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”
存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”
这5.67元的'利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。
根据国家经济的发展变化,银行存款的利率有时会有所调整。10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。
按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少。
元?提问:
“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。
“二年应得利息多少元?”学生口述,教师接着板书:×2。
小丽的存款到期时可以得到的利息是35.64元。
“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。
三、巩固练习。
做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。
四、作业。
练习一的第1题。
设计与应用教案篇二十
使学生初步认识什么叫做应用题的条件和问题,初步学会解答一半用图画一半用文字叙述的应用题,为正式学习解答文字叙述的应用题做准备,图文应用题。
主体图和小棒。
1.口算。
9+3=9-4=19-9=9+6=9+8=9-9=10-9=9+9=。
2.9+7,请你说一说你是怎样算的?
3.完成课本102页的第2题。
让学生独立完成,全班填在书上。
1.出示课本101页的例3的主体图。
(1)提问:图中告诉我们有什么?(乐队有5人)又告诉我们什么?(唱歌的有9人)要我们求什么?(一共有多少人?)。
教师:这道题里不论是用图画表示,还是用文字写出来,都把它叫做已知条件。题目中要我们求什么叫做问题。
提问:这道题的第一个已知条件是什么?第二个已知条件是什么?问题是什么?
教师:我们现在已学过的题目,一般都有两个已知条件和一个问题。请大家同桌的互相说一说题目中的两个条件和问题。
(2)要求一共有多少人,用什么方法计算?怎样列式?为什么?(因为是把唱歌的人和乐队合并起来,所以用加法计算,小学数学教案《图文应用题》。)。
列式:9+5。
教师:我们今天学的这种一半用文字表示的应用题叫图文应用题。(板书课题)。
小结:我们以后做这样的应用题时,都要首先看清楚题中告诉我们已知条件,问题是什么。然后再根据已知条件和问题,想一想用什么方法计算。并列出算式来。
(3)9+5怎样计算呢?
请同桌的同学用摆小圆片的方法,讨论9+5怎样计算。
9+5=14(人)。
教师:在14后面写有“(人)”,这“(人)”是单位名称,应用题解答完后都要在得数后面写上单位名称。
2.完成课本101页的做一做。
出示主体图。
用自己的语言叙述一下画面的内容。
要求“一共有多少个南瓜。”图中告诉我们什么条件?
(原来有9个,小朋友拿来6个南瓜。)。
请大家把这道题的两个条件和问题连起来说一说。
想一想,要求“一共有多少个南瓜。”该怎样列式。
列式:9+6=15(个)。
2.完成课本102页的第3题。独立完成后,全班讲评。
汇报:相同点:都有2个已知条件和1个问题,都是根据加法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法计算。
不同点:图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题,是用图和文字来表示已知条件和问题,比图画应用题难一些。