二次根式教学设计理念大全(14篇)
总结是对时间的利用和管理的一种方式,可以更有效地提高学习和工作的效率。再次,重要的是以下是小编为大家整理的幸福秘诀,希望大家能有一个幸福的人生。
二次根式教学设计理念篇一
课型:新授课。
教学目标:
2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。
3.情感态度:培养学生善于思考,一丝不苟的科学精神。
重难点分析:
重点:能熟练进行二次根式的加减运算。
难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。
教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。
运用教具:小黑板等。
教学过程:
问题与情景。
师生活动。
设计目的。
活动一:
情景引入,导学展示。
1.把下列二次根式化为最简二次根式上述两组二次根式,有什么特点?
这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。教师倾听学生的交流,指导学生探究。
问:什么样的二次根式能进行加减运算,运算到那一步为止。
由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。
加强新旧知识的联系。通过观察,初步认识同类二次根式。
二次根式教学设计理念篇二
2、掌握把二次根式化为最简二次根式的方法。
重点:化二次根式为最简二次根式的方法。
计算:
我们再看下面的问题:
简,得到。
从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。
答:
1、被开方数的因数是整数或整式;
2、被开方数中不含能开得尽方的因数或因式。
满足上面两个条件的二次根式叫做最简二次根式。
例1试判断下列各式中哪些是最简二次根式,哪些不是?为什么?
解
(1)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。整数。
(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。
(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。
(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。
(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22。
指出:从(1),(2),(6)题可以看到如下两个结论。
1、在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
2、在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。
例2把下列各式化为最简二次根式:
分析:把被开方数分解因式或因数,再利用积的算术平方根的性质。
例3把下列各式化成最简二次根式:
分析:题(1)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式。
题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式。
通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法。
答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简。
如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简。
a、2b、3。
c、1d、0。
3、把下列各式化成最简二次根式:
答案:
1、b。
2、b。
1、最简二次根式必须满足两个条件:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。
2、把一个式子化为最简二次根式的方法是:
(2)如果被开方数含有分母,应去掉分母的根号。
1、把下列各式化成最简二次根式:
2、把下列各式化成最简二次根式:
二次根式教学设计理念篇三
3.a、b层同学自主学习15页例1、例2、例3,c层同学至少完成例1、例2的学习。
小结:
这节课你学到了什么知识?你有什么收获?
作业:课堂练习册第5、6页。
自学的`同时抽查部分同学在黑板上板书计算过程。抽2名c层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名b层同学订正。抽2名b层同学在黑板上完成例2板书过程,若出现错误,再抽2名a层同学订正。抽1名a层同学在黑板上完成例3板书过程,并做适当的分析讲解。
此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1m,学生考虑问题要全面,不能漏掉任何一段钢材。
老师提示:
1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。
a层同学完成16页练习1、2、3;b层同学完成练习1、2,可选做第3题;c层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名c层同学口答练习1;抽4名b层或c层同学在黑板上板书练习第2题;抽1名a层或b层同学在黑板上板书练习第3题后再分析讲解。
点拨:
1)对的化简是否正确;
2)当根式中出现小数、分数、字母时,是否能正确处理;
3)运算法则的运用是否正确。
先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。
小结时教师要关注:
1)学生是否抓住本课的重点;
2)对于常见错误的认识。
把学习目标由高到低分为a、b、c三个层次,教学中做到分层要求。
学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。
将二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。
小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。
培养学生的计算的准确性,以培养学生科学的精神。
对课堂的问题及时反馈,使学生熟练掌握新知识。
每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。
二次根式教学设计理念篇四
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点。
教学难点。
一个二次根式化成最简二次根式的方法。
教学过程。
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1把下列各式化成最简二次根式:
例2把下列各式化成最简二次根式:
4.总结。
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
二次根式教学设计理念篇五
(2)会进行简单的二次根式的除法运算;。
本节内容主要是在做二次根式的`除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。
重点:二次根式的乘法法则与积的算术平方根的性质.。
难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。
4。1第一学时。
问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。
2.观察思考,理解法则。
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。
例1计算:(1);(2);(3)。
师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,
问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?
师生活动学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。
问题6课件展示一组二次根式的计算、化简题。
【设计意图】让学生用总结出的结论进行二次根式的运算。
例2教材第9页例7。
再提问章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
1.在、、中,最简二次根式为。
【设计意图】考查对最简二次根式的概念的理解。
2.化简下列各式为最简二次根式:;。
【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。
3.化简:(1);(2)。
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。
教科书第10页练习第1,2,3题;
教科书习题16。2第10,11题。
二次根式教学设计理念篇六
教学目标:
掌握二次根式的概念;根据二次根式的概念掌握被开方数的取值范围。
教学重难点:
重点:二次根式的概念以及二次根式有意义的条件;
难点:根据要求求满足条件的字母的取值范围。
教学方法:先学后教,当堂训练。
课时安排:一课时。
教学过程:
1、知识回顾。
1、算数平方根:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的`算数平方根。
2、正数的算数平方根是正数,0的算数平方根是0,负数没有平方根。
2、板书课题。
3、出示学习目标。
4、出示自学指导。
自学教材2、3页,完成下列各题:
1、完成第二页思考题,找出二次根式的概念;
3、式子有意义的条件;
4、完成《基础训练》课前预习。
5、检测。
3、式子有意义的条件。
4、课前预习讲解。
6、练习。
1、教材3页练习题;
2、习题16.1第1、7题;
3、《基础训练》课堂练习。
7、小结。
8、作业。
1、课本19页第一题。
2、《基础训练》课后练习。
3、思考学习拓展。
9、教学反思。
1、因为学生已学习过算数平方根,所以对本节课知识能较快掌握;
2、本节课的关键在于掌握二次根式有意义的条件:被开方数大于等于0。同时结合之前所学知识能解答式子有意义时字母的取值范围。
3、学习之初应加强练习,把课堂还给学生,发挥学生主动型。
二次根式教学设计理念篇七
一、案例背景:
本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。
二、案例描述:
1、学习任务分析:
通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。
2、学生的认知起点分析:
学生已掌握数的平方根和算术平方根。这为经历二次根式概念的发生过程做好准备。另外,学生对数的算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的理解。
案例反思:
以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。
2.合作活动:
第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;
第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;
第四位同学——复查者:请你一定要把好关哦!
出题者姓名:解题者姓名:
第一个二次根式:1.要使式子的值为实数,求x的取值范围.2.写出x的一个值,使式子的值为有理数,并求出这个有理数。3.写出x的一个值,使式子的值为无理数,并求出这个无理数。
第二个二次根式:1.要使式子的值为实数,求x的取值范围。2.写出x的一个值,使式子的值为有理数,并求出这个有理数。3.写出x的一个值,使式子的值为无理数,并求出这个无理数。
批改者姓名:复查者姓名:
《课程标准》突出了学生在学习中的地位--学生是学习的主人,同时,教师的地位、角色发生了变化,从“主导”变成了“学生学习活动的组织者、引导者和合作者”。合作活动的安排就是对这一课程标准的体现。
二次根式教学设计理念篇八
新的课程标准,倡导把课堂变为学生自主、合作、探究的场所,呼唤学生主体性的发展。于是课堂上,我转变角色,变数学知识的传授者为数学活动的组织者、指导者、参与者和研究者。教学活动中,我首先明确这节课的学习目标,然后学生在问题的基础之上逐步地得出这节课的重点内容。这样让学生感觉坡度不大,掌握起来比较容易。从而充分利用公式来做题。
我在设计练习题时,一是遵循学生的学习规律,从易到难。二是从易错点出发。并且我进行了分层练习,分为a、b、c三组。最后我附加了小测验。测验题紧扣本节课的知识内容,从易到难。数学来自于生活,我在最后加了一个实际题目。
从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化。整堂课始终把学生摆在第一位,让他们主动去学习。真正把课堂交给学生,让他们变成学习的主体。层层的问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程。在这种学习活动中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力。
二次根式教学设计理念篇九
对于第一个目标期望学生能自行归纳出来最简二次根式一般形式就最好,对于第二个目标让学生自行体验到先化简再分母有理化的方法是最简方法.
今天上午结束这节课后,颇有感触.同学们讨论问题提的时候自始至终非常专注,而且很高效,有三个几乎从来不举手回答问题的同学能大胆走上讲台给大家讲解二次根式一道除法题的三种解法,他们的登台引起全班同学的欢呼.这是组员们的努力所带来的结果.对于这节课有以下几点值得思考:。
这节课为了让同学掌握二次根式的定义,我直接抛出“什么是二次根式”。
这个问题让同学们去讨论,但后来效果并没有达到我想象的高度.其实后来想想这个问题的设置不能过于直接,应当列举诸多二次根式,让同学们判断哪些是二次根式,并讨论其理由,这样引导学生从感性过渡到理性.从而顺利掌握这个概念的本质.所以问题的设置不能死板,教条,要多样化,其目的是让学生能高效的掌握知识本身.
1.循序渐进:这节课原本很希望学生能在一节课内就体会到先局部化简后在进行分母有理化的方法计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想这一节课是否,对于第二个教学目标只能是一个循序渐进的过程,应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就行.
2.作业的处理:以前处理作业中总是对于做错的题目给一个红叉,并每一份作业评分.从现在开始,作业不再给红叉,用横线标注代替红叉,也不给评分.让孩子们关注的永远是知识本身,对于作业始终强调的是诚实的独立作业,认真的纠错这两点.
二次根式教学设计理念篇十
同时感受到数学的意义和价值。我们要树立一种大数学的教学观,这就要我们的教学空间开放,不仅要在课堂教学时努力体现从问题情景出发,建立模型,应用与推广基本流程。通过观察、操作、思考交流等活动逐步增强学生的应用意识,使学生认识到数学与现实世界的.联系。更重要的是安排多种可供选择的教学活动,例如:课前的调查与实践,课后的数学探究和实践活动,写数学笔记等。让学生在社会实践中发现数学,探究数学和应用数学。
它山之石,可以攻玉。我今后一定要多参加其他教师的观摩课,在观摩时应该多分析其他教师是如何组织教学的。他们为什么这样组织教学?假如让我来上这节课,我的课堂环节和课堂效果与他们的课堂效果比结果如何,他们有哪些优点可以借鉴,有哪些失误之处可以改之。如果遇到课堂偶发事件,我会如何处理……通过这样的反思分析从他的教学中得到启发,从而提高自己的课堂效果。
在本章教学中,存在以下问题:
1:平方根的意义是基础中的基础,特别是由平方根的意义转化而来的“乘方与开方的互相转化”对理解和计算有关于“二次根式”类题目有至关重要的作用。
2:不可一味追求速度与技巧而忽视了基本原理的探讨,否则有可能转一圈后又回到起点。
另外,要经常引导学生进行反思。如果每次都是简单做一做,学生很快就会有厌烦情绪。所以在引导学生这样做时,要给予其恰当的鼓励和启示、评价。让学生体会到自己这样做的好处,使他们在这样做的过程中得到激励和启示,并在后面的学习中有成功感。
学生只有对自己进行反思总结,就会收到意想不到的学习效果,使学生领悟生活和学习思想、方法,优化自己的知识结构,发展思维能力,培养创新意识。
二次根式教学设计理念篇十一
在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:
1、课前没很好确定学生的基础知识情况。
高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。
2、课堂没完全还给学生。
预习时间不充分,大部分学生是回顾了本章的知识点,但还没来得及思考,易错点没有来得及整理展示讨论,老师就开始讲课,总怕展示时间过多以至于本节任务完不成。课堂活动时间也不充分,并且学生在思考问题时给予提示过多,以至于学生顺着老师的思路走,没有了自己的思考体系。因为时间不足,所以老师只好代替学生走了一下过场,订正答案,还有一部分学生还没有做完。这样就不能真正检验学生掌握情况,不能及时反馈,及时采取措施进行补救。
3、课后练习不能真正落实。
学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。在这里,应要求学生对100以内的二次根式化简熟练掌握,为二次根式的加减打下扎实的基础。对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的加减,整式的乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。把过去学过的知识复习,使学生能够独立完成二次根式的运算。
二次根式教学设计理念篇十二
在二次根式化简这一节的学习中,重点是是掌握二次根式的化简运算,教学的关键是理解二次根式的性质,在本节教学中,存在以下问题:
1、虽然九(1)班是我从七年级带上来的,对学生的基本情况较为了解,但在教学设计中,仍然存在着对学情况分析不足,主要是过高估计学生的学习能力,一方面这节课设计的教学内容过多,一节课结束后还有不少内容没有完成,另一方面对以前学过的知识的复习工作做的不够,导致后续的新知识的学习遇到不少麻烦。如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。
2、九年级数学是新教材,在教学过程中,我的教学理念还没有及时更新,有时对新老教材的区别关注不够,从而导致教学不到位。在二次根式的化简中,老教材比较重视对具体数的化简,对字母的要求不高,一般都确保二次根式有意义,而新教材特别要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的学习态度和推断字母取值范围的能力。刚开始对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本节中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的.效果会提高很多,学习的能力也会不断提高。
4、在学生的学习方面,也有值得反思的地方,九(1)班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
基于上面的诸多因素,九(1)班学生在本节的学习还不够理想,在本节单元测验中,也得到了体现,高分比以往减少,不及格人数明显增加,平均分大幅降低。因此在今后的教学工作中要加强改进,提高教学实效。
二次根式教学设计理念篇十三
本节课是二次根式第一节课,从小榄有线电视台发射塔电视节目信号的传播半径引入,符合学生实际,能引起学生学习兴趣,能说明学习二次根式在实际生活中有用,恰当合理的引入手到效果很好。
从实际问题列式,分析它们共同属性:正数(或0)的算术平方根,给二次根式下一个定义,从定义出发确定二次根式有意义的条件,进一步深刻理解二次根式,符合概念课教学的要求,学生掌握情况比较好,概念课教学的五个基本步骤:
(1)先给出实例。
(2)分析共同属性。
(3)下定义。
(4)概念应用。
(5)概念之间关系,在这节课很好体现。
在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
另外,要经常引导学生进行反思。如果每次都是简单做一做,学生很快就会有厌烦情绪。所以在引导学生这样做时,要给予其恰当的鼓励和启示、评价。让学生体会到自己这样做的好处,使他们在这样做的过程中得到激励和启示,并在后面的学习中有成功感。所以要大力表扬那些认真思考的同学,如对于一道难题,不管是自己解决还是和别人共同解决出来的,我都会让学生理清一下思路,思考这类题的解法,如果学生不会解,听老师讲解后明白了,我会让学生反思一下原因,为什么当时不会解,是什么原因造成的?学生只有对自己进行反思总结,就会收到意想不到的学习效果,使学生领悟生活和学习思想、方法,优化自己的知识结构,发展思维能力,培养创新意识。
二次根式教学设计理念篇十四
本节课主要内容是学习二次根式的定义和性质,重点是对二次根式的性质1和性质的理解及应用吗,上完本节课后,我的反思如下:
1、由于本节课是九年级上册第二十一章的内容,是一节新授课,而且所有学生没有教科书,因此如何在没有教科书的前提下,让学生理解并掌握本节内容,对我来说也是一次新的尝试,在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决、2、在实际授课中,在让学生明白了本节学习目标后,通过以下步骤让学生认识、理解、并掌握本节知识:
(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
3、在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
4、让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
5、在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。
6、在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。
通过这次公开课,使我的教学技能得到了很好的锻炼,我在今后的教学中,将继续学习好的一面,对不足之处进行改善,争取使自己的教学水平得到提高。