2023年求三角形面积教案 三角形面积公式课件(四篇)
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
求三角形面积教案 三角形面积公式课件篇一
人教版9册 三角形面积公式推导部分
1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。
2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。
3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。
先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。
1厘米
学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:
(1)数方格怎么求三角形的面积?
(2)不数方格怎么求三角形的面积?有没有一个通用公式?
(3)能把三角形也转化成我们学过的图形求面积吗?
(4)转化成的这些图形跟三角形有什么关系吗?
(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)
1、数方格的问题
学生根据学习材料可以解答用数方格的方法求三角形的面积。
老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。
学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。
嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。
(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)
2、转化的问题
你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。
师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。
(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)
学生操作,讨论,汇报。
1、转化的图形
学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。
2、解决转化前后图形间的关系
(1)大小的关系
通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是s=s÷2。一个三角形转化成的图形跟三角形关系是s =s
(2)底和高的关系
拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?
生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2
师:思路真清晰,为什么÷2,谁还想说。
(学生依次讲拼成的长方形,正方形这两种情况)
(3)公式推导
师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?
生:底×高÷2
师:如果我用s表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?
生:s=a×h÷2
(4)推导拓展
师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?
学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2
师:这个方法怎样,谁来评价一下。学生评价,太棒了。
生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2
(析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)
归纳小结
出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。
(析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)
1、充分体现了“问题意识的培养”。
老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。
2、重视研究问题的过程。
这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。
求三角形面积教案 三角形面积公式课件篇二
《三角形的面积》这节课是这节课是在学生已经学习了平行四边形面积的基础上进行的,在教学时,上课的前一天我布置了预习作业:
1、剪一剪,每人剪一对完全相同的三角形(我把学生分为四组,一组的同学每人剪一对完全相同的锐角三角形,二组每人剪一对完全相同的钝角三角形,三组每人剪一对完全相同的直角三角形,四组每人剪一对完全相同的等腰直角三角形)。
2、拼一拼,将剪好的两个三角形拼一拼,能否拼成一个平行四边形。
3、观察,拼成的平行四边形和三角形之间有怎样的关系?
4、想一想,三角形的面积公式怎样表示?
课的开始,我先检查学生的预学情况,提问:谁知道三角形的面积公式?学生生纷纷举手回答,接着,我又问:你是怎知道的?多数学生脸上一片茫然,于是带着疑问,学生走进了课堂。
课堂中,我开展了学生动手活动,活动一:我让学生分组展示课前剪拼的图形,一组同学拼成了一个平行四边形,二组同学也拼成了一个平行四边形,三组同学拼成了一个平行四边形或长方形,四组同学拼成了一个平行四边形或正方形。通过学生展示,不难发现,两个完全相同的三角可以拼成一个平行四边形(长方形和正方形也属于特殊的平行四边形),接着,我引导学生观察发现:拼成的平行四边形的面积是三角形面积的2倍,三角形的面积是平行四边形面积的一半。而且,其中的一个三角形和拼成的平行四边形是等底等高的,因此得出三角形的面积公式是:三角形的面积=底×高÷2,用字母表示s=ah÷2。接着我进行第二个活动:我让一组和三组,二组和四组的同学,每人交换自己手上其中的一个三角形,看看,交换后的两个三角形能否拼成一个平行四边形,学生很快发现,不能拼成一个平行四边形,原因很简单,两个形状不同三角形不能拼成一个平行四边形。也就是说,必须是完全相同的两个三角形才能拼成一个平行四边形。最后我进行第三活动:我让一组的同学拿出一个三角形和二组的同学拼成的平行四边形作比较,三组的同学拿出你的一个三角形和四组同学拼成的平行四边形作比较,看看你的三角形面积是不是他拼成的平行四边形面积的一半,学生很快做出正确判断,不是。那你知道这是为什么?学生很纳闷,于是,我让学生四人小组共同探讨,不一会儿,有的学生就发表自己的看法,因为我的三角形和他那个平行四边形不是等底等高的,所以我的三角形的面积不是他的平行四边形面积的一半,于是,同学们得出结论:等底等高(或同底等高)的三角形的面积是平行四边形面积的一半。强调:等底等高。
这节课下来,我觉得我教的很轻松,学生学的很愉快。回顾整个堂课,我发觉学生真正是课堂的主人,教师真正是课堂的组织者、引导者。学生的学习是积极的、主动地,而不是被动的。猛然间,我意识到这样的精彩课堂来源于我将课前预习落到了实处,学生从课前预学到参与课堂活动,他们经历了对新知识的发现,对问题的思考,对结论的概括。同时,教师精心指导,生生交流,展示他们对知识的理解和认识,教师在课堂中适时点拨,梳理学生预学中的的盲点。既突出了重点,又突破了难点。课堂效果良好。由此可见,学生课前预学至关重要,课前预学为落实学生成为课堂的的主人提供了保障。学生课前预学是课堂教学的前提和基础,是课外到课内的桥梁和纽带。学生参与课前预学不但对新知识有了一定的了解,而且好奇心促使学生对新知识进一步思考、探究、发现问题。然后带着问题、带着疑惑走进课堂。这样,学生才能成为课堂的主人。这样的课堂何乐而不为?
求三角形面积教案 三角形面积公式课件篇三
“三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深。
以前的教学只是注重学生的双基训练,不重视知识的生成过程,而这节课的所有设计都围绕学生的思维,学生的分析问题能力,整节课体现学生主动参与、乐于探究、勤于动手,培养了学生获取新知识的能力,分析问题和解决问题的能力,以及交流与合作的能力,教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。
开放的探究式学习要不受任何人的约束,要有教师层层深入的引导。这节课设计中,教师注重教材的开放性和思考性,不断鼓励学生去思考,去探索不同的办法,让学生有自主选择的权利和广阔的思维空间,让学生独立思考与小组合作相结合,在相互交流的过程中,自行总结出了三角形的面积公式,学生在操作活动中展现了自我,方法多样且独特,是以往教学所没有的,效果很好。创设引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。
本节课老师赋予了学生很多思考、动手和交流的机会,教师扮演了组织者、引导者和合作者的角色,充分发挥学生的主体作用,较好的体现了教师是学生学习的引导者,引导学生围绕问题的核心进行深度探索、思想碰撞等。从根本上改变了传统的教学模式,使学生达到对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。拓宽了学生在数学教学活动中的空间。
这个案例一定程度上反应了要改变传统的教学方法,要实施新课改,最根本的还是教师角色的转变,转变传统意义上的教师教,学生学,不断形成师生互教互学,彼此形成一个“学习共同体”。为了进一步激发学生的潜能,使他们的讨论和思考更有价值,我们每一位教师都应该不断学习,提高个人素质,以设计出更好的教学环节,让师生共同成长!
求三角形面积教案 三角形面积公式课件篇四
1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。
2、培养学生观察能力、动手操作能力和类推迁移的能力。
3、培养学生勤于思考,积极探索的学习精神。
本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和平行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。
本小节教材分为三个部分。第一部分是用数方格的方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过平移、旋转分别拼摆成平行四边形,通过发现每个三角形与拼成的平行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。
本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。
教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习的平行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。
在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想平行四边形面积公式的推导过程,启发提问:能不能也把今天学习的三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有平行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。
本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。