学生教学设计的问题(通用19篇)
写作是培养语文表达能力的关键。怎样发展自己的个性特点,实现自我价值?现在,让我们一起来看看下面这些精选的总结范文吧!
学生教学设计的问题篇一
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第1。
17、118页例。
1、例2。教学目标:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的间隔数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。过程与方法:
经历解决实际问题的过程,体验分析解决问题的方法。情感态度与价值观:
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,收到热爱劳动,保护环境的教育。教学重点:
理解掌握解决问题的规律。教学难点:
能运用规律解决实际问题。教学、具准备:
尺子、树、纸条等。
教学过程:
一、谈话引入,教学“间隔”1.猜一猜。
同学们你们喜欢猜谜语吗?今天老师给你们带来一则谜语你们想猜吗?两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。这是什么呢?(手)。
2、教学“间隔”的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、探究新知。
1.小黑板出示:
同学们在20米长的小路一边植树,每隔5米栽一棵。一共需要多少棵树苗?
(1)学生读题,理解题意。
(2)独立思考,再小组合作,探究植树的方案。(3)学生在黑板上展示自己的作品。2.师小结各种方法,并板书。
3、尝试应用。
小黑板出示题目:
同学们在100米长的小路一边植树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?学生独立完成,集体订正。
三、巩固练习。
师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题.学生完成例二后的做一做。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,只栽一端的话:棵树=间隔数;两端都不栽的话:棵树=间隔数-1;而且还运用规律解决了生活中的实际问题。
四、全课总结。
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树的问题等,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
特点。
植树的棵树。
间隔数。
棵数与间隔数的关系两端都栽:
棵数=间隔数+1只栽一端:
棵树=间隔数两端都不栽:
教学反思:
“植树问题”是新课标人教版四年级下册的内容,教材将植树问题分为几个层次:两端都种、两端不种、及封闭图形。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究上都很重要的数学思想方法——化归思想。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后学生动手操作出示实例图示,引导学生在观察、点数形象图形后进行对比,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作。
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。
不足之处是:
1、自己的普通话不过关。
2、时间没掌握好,学生合作探究时花费时间长了,导致延时。
学生教学设计的问题篇二
教学目标:
1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的“转化”意识,提高学好数学的信心.
教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。
教学难点:会用“转化”的策略解决问题。
教学准备:电子课件、实物投影。
预习作业:
教学过程:
预习效果检测分别出示两组图片。
(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。
学生得出:第一个图形:上面半圆向下平移5格。
第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。
教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。
师:你知道你刚才比较时运用了什么策略吗?
教师板书转化,将课题补全(用转化的策略解决问题)。
在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。
这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。
转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。
空间与图形的领域。
1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?
2、检查课本练一练,指名学生口答。
转化成什么图形可以使计算简便?怎样转化?
3、检查练习十四第三题。
4、试一试:1/2+1/4+1/8+1/16。
这道题你是怎样求和的?小组交流。
5、练一练4(课本练习十四1)。
每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。
三、当堂达标:完成补充习题对应的练习并交流反馈。
四、故事启迪,领悟转化的技巧。
数学家爱迪生求灯泡的容积的故事(幻灯片)。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。
爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
听了这个故事,你明白了什么道理?
五、课堂总结:
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。
学生教学设计的问题篇三
1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
发现并理解两端都栽的植树问题中间隔数与棵数的规律。
运用“植树问题”的解题思想解决生活中的实际问题。
课件、直尺、学习纸。
(一)创设情境,引入新课。
教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)。
教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)。
(二)充分经历,探究新知。
1、大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:
“每隔5米栽一棵”是什么意思?
使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。
“两端要栽”是什么意思?“一边”是什么意思?
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)。
2、借助操作,探究规律。
(1)初步体验,化繁为简。
教师:为什么觉得很麻烦?
学生:因为100米里面有20个5米,太多了。
教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。
(2)教师演示,直观感知。
教师演示课件,边演示边说明。
教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)。
教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?
引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。
(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)。
(3)动手操作,初步体验。
让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。
(4)合理推测,感知规律。
教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。
学生填写表格,教师巡视,对个别学生进行指导和说明。
学生填写完表格后,小组交流汇报结果。
(5)归纳概括,理解规律。
教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。
学生汇报自己的发现。
引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。
教师:为什么两端都栽树,棵数比间隔数多1?
学生回答后,教师借助课件演示帮助学生进一步直观理解。
(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)。
(6)即时巩固,强化规律。
(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)。
3、运用规律,验证例1。
学生尝试列式解决问题,教师巡视,有针对性地指导。
(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)。
(三)回归生活,实际应用。
1、“做一做”第1题。
教师:这道题里没有植树呀,能用我们今天学的方法解决吗?
使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。
教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。
2、练习二十四1、2、3题。
让学生进一步感受到植树问题在生活中的广泛应用。
3、练习二十四第4题。
教师:这一题与例题有什么不同?
老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。
教师:你是怎样计算的?为什么用36减1?
(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)。
(四)课堂小结,畅谈收获。
通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。
从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。
“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。
但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。
学生教学设计的问题篇四
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、
情感态度与价值观。
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重、难点。
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
教学准备:
课件。
教学过程:
一、动手种树,初步感知。
1、创设情景。
2、理解题意。
[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。
师:从这份要求上,你能获得哪些信息?
(20米长的小路,一边,每隔5米种一棵)。
3、设计方案,动手种树。
师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。
学生活动,教师巡视指导。
4、反馈交流。
师:根据你的方案,需要种几棵树?
师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?
请设计师们给大家作一下介绍。
师:他的设计符合要求吗?
师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。
师:接下来我们来看看种4棵树的设计方案是怎样的?
生答。
师:最后我们来看看种3棵树的设计方案又是怎样的呢?
生答。
师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!
看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。
师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽只栽一端两端不栽)。
二、合作探究,
总结。
方法。
1、总结规律。
师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。
植树方案间隔数(个)棵数(棵)间隔数与棵数的关系。
学生反馈交流,师生共同完成表格。
师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。
(学生活动后反馈交流)。
师小结。
2、运用规律。
三、开放练习,应用方法。
(1)学生独立解答。
(2)全班交流结果。
2、师:如果两侧都要种,一共需要多少棵樟树苗?(把。
第1。
题中的“一侧”改为“两侧”?)。
(1)学生独立解答。
(2)集体反馈。
(1)学生独立解答。
(2)集体反馈。
师小结。
(1)学生独立解答。
(2)集体反馈。
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
6、书本p122练习二十第4题。
四、课堂小结,课外延伸。
师:通过这节课的学习你有什么收获?
五、板书设计:
(主板书)(副板书)。
间隔距离间隔数棵数。
两端要栽:间隔数+1=棵数1米20个21棵。
只栽一端:间隔数=棵数2米10个11棵。
两端不栽:间隔数-1=棵数4米5个6棵。
10米2个3棵。
学生教学设计的问题篇五
今天我们继续学习第21课彭德怀和他的大黑骡子.1934年10月长征开始,彭德怀从江西出发就带着他心爱的坐骑大黑骡子,一起征战沙场,一起出生入死,在彭德怀的心里早就深埋着对大黑骡子的爱.这爱从课文的字里行间流淌出来,快速浏览课文,找出表现彭德怀喜欢大黑骡子的句子.(在上堂课结束时布置了预习作业)。
二、品味爱大黑骡子。
交流。
生:有时,彭德怀抚摸着大黑骡子念叨着:”你太辛苦了,连一点料都吃不上.”说着,就把自己的干粮分出一些,悄悄地塞进大黑骡子的嘴里,一直看着他吃完.我从这句话可以看出,因为当时干粮很紧缺,彭德怀还把干粮省给大黑骡子吃.
生:我从这句话中的念叨的话可以看出来,把大黑骡子当成伙伴一样.
师:你们抓住了这句话中的事情和语言,体会到了对大黑骡子的爱.还有补充吗?
生:从抚摸也可以看出来,还有悄悄地.
师:对悄悄的你怎么理解?
还从哪里能体会到?
生:彭德怀深情地望着拴在不远处的大黑骡子,平静地对警卫员们说:”部队现在连野菜也吃不上了,只有杀牲口解决吃的,或许能多一些人走出草地.”从深情可以看出来.
师:同学们,我读这句有点奇怪,深情怎么还能平静地说呢?
生;我觉得不奇怪,因为如果表露出来了爱大黑骡子,那么战士们更舍不得杀骡子了.
师:原来那平静的外表下涌动的是深情.
生:我还从彭德怀背过脸去.看出了,要杀大黑骡子他很不忍心.
师:如果我们能够看到,那你说在他脸上写着什么?
生;在他脸上写着舍不得,难过伤心。
生;我还能从枪声响了.彭德怀向着斜倒下去的大黑骡子,缓缓地摘下军帽看出来.
师:一般在什么情况下会摘下军帽?
生:在战友牺牲的时候,在怀念烈士的时候---。
生:彭德怀推开警卫员端来的一碗肉汤,发火道:”我吃不下,端开!”发火是因为心里特别难受,想到这里有大黑骡子的肉,难以下咽.
师,把这种感情融入其中读一读。
师:这哪里是对一头骡子,这分明是一位亲密的伙伴.的确,战士们常常能在宿营地见到彭德怀和大黑骡子的身影,他给大黑骡子掸掸土,刷刷毛,说说话-----可是今天他却下了这样三道命令:。
三、从矛盾中体会爱战士。
出示命令:1好,全部集中起来,杀掉吃肉!
2邱南辉,传我的命令,让方副官长负责杀骡子!
3\副官长,快开枪!你不向他们开枪,我就向你开枪!
师,读读这三道命令,你读出了怎样的语气?
生:坚定,果断的。
生:第一道命令是将军看到草地断粮了,战士们一个个因饥饿昏倒在的的情况下发出的.
师:杀骡子为的是解决这燃眉之急.什么样的情况堪称燃眉之急啊?
生:火烧眉毛的急,这里指断粮了.
师,面对这燃眉之急,于是彭德怀果断地命令道_____引读好全部集中起来,杀掉吃肉!
师:“第二道命令又是在什么情况下发出的?”
生:是在大家请求不要杀的时候,彭德怀将军不耐烦了于是这样命令。
师:同学们,难道这骡子就非杀不可吗。
生:我觉得不用杀,因为还有五头骡子呢,也已经够吃了。
生:我也觉得不要杀,大黑骡子立过功。
生:这个大黑骡子一路过来,驮过伤病员,驮过器材,不该杀。
生:因为那是彭德怀的坐骑!杀了,他怎么走出草地。
生:那是因为这一路上又驮伤病员又驮粮食的,所以我们会忘记了那是坐骑!
师:现在还有没有同学和彭德怀持一样想法的,觉得必须杀的。
生:我就觉得必须杀。
师问他:大黑骡子立过功,生:那就让他立最后一次功吧。
师:杀了五头就够了!生:不够,杯水车薪。
师:同学们,我们从中感受到了彭德怀将军什么品质啊?
生:与战士同甘共苦,师引导说(风雨同舟),(同舟共济)。
分角色朗读这一部分。
生:当他们都不杀的时候,彭德怀将军怒吼道:----。
生:寂静的。
生:漫长的二十分钟,度日如年的。
生:战士们会想,那时我受伤,大黑骡子还驮过我呢。
生:彭德怀会想起和大黑骡子一起战斗的日子。
师:让我们把这种感情融入其中,读好这二十分钟。
四|、录象深化理解:
每个人都舍不得杀大黑骡子,那我们来看看当时的形势,相信你对这个燃眉之急有更深的理解(录象红军长征过草地)。
师:问,现在你说燃眉之急是指什么?(生略)。
分分秒秒,都有战士面临死亡的威胁,于是他大声命令——引读第二个命令。
十分钟,二十分钟,拖一分钟,就多一条生命离去,因此他怒吼道——引读第三个命令。
不是因为不爱,而是因为更爱战士,他的心在痛苦中抉择,只有舍弃骡子才能换的更多的生命!让人不由赞叹:齐读:风雨苍苍,一路泥潭一路霜。路途茫茫,一把草根一把糠。绝处危情,战士生死谁牵挂,痛杀爱骑,一腔热血洒碧疆!
五、总结全文,升华主题:
师:漫漫征途——引读最后一节:
铁流在这里指什么?
生:队伍。
师:人多指人流,那为什么称他们为铁流呢?
生:那是因为他们有钢铁般的意志,战无不胜。
师:是什么给了他们钢铁般的意志,这里的“它”指什么?
生:指大黑骡子。
师:仅仅指大黑骡子吗?
生:不是,还知彭德怀对大黑骡子的爱对战士的爱,还指他们的精神。
师:这些精神都融进了宣传鼓动员的竹板声里:身无御寒衣——齐读。
师:我想问问那身无御寒衣的红军战士:是谁给了你温暖?那晕倒了爬起来的战士:是谁给了力量?(学生回答略)这竹板声一声声地响在我们心上:配乐(长征)齐读身无御寒衣,肚内饥,晕倒了爬起来,跟上去,走到宿营地!
学生教学设计的问题篇六
引导学生通过对“租船费用”问题的研究,掌握先假设再根据假设结果进行逐步调整的基本方法,培养学生的应用知识解决实际问题的能力。
(二)过程与方法。
经历自主探究“租船费用”最省的过程,感受数据变化的规律性,培养学生独立思考、独立解决问题和积极参与学习活动的能力和意识。
(三)情感态度和价值观。
体会数学与生活的紧密联系,感受数学应用的灵活性、广泛性和优化思想。
教学重点:掌握先假设,再根据假设逐渐调整的基本方法。
教学难点:通过对现实数据的分析进行合理调整。
课件、学习单。
(一)激趣引入,提出问题。
(播放歌曲伴奏)。
预设:
生:《让我们荡起双桨》。
预设:
生:北海划船。
3、师:大家想象一下,和风旭日,杨柳如茵,轻摇橹桨,泛舟河中,是多么惬意的事情呀!别光美,你知道吗?这划船里也有不少学问呢?今天我们这节课就来研究《租船问题》。
【设计意图】良好的开端是成功的一半。从现实生活的事例引出研究内容,不但可以激发学生的探究兴趣,而且可以提升学生用数学的眼光观察生活,审视事物和用已有知识解决实际问题的意识。
学生教学设计的问题篇七
1、使学生初步学会解答求一个数比另一个数多(少)几的应用题。
2、培养学生观察能力,实际操作能力及初步分析和推理能力。
3、通过操作培养学生的动手操作能力。
3、让学生经历自己提出问题、自己解决问题的过程,培养学生的自主探究能力。
4、生活情境的模拟教学,使学生体会到生活数学无处不在,培养学生在生活中发现问题,解决问题的`能力。
多媒体课件。
1、看一看。
师:你看到这副画,想说什么?
生:一和同样多。
师:你怎么知道是同样多?
生1:有5个,也有5个。
生2:和一个一个可以相对的。
师:小朋友都回答的非常好,给你们小组各加一颗五角星。(学生回答对了问题教师要及时给该小组加五角星。)。
2、摆一摆。
请小朋友们拿出你们的学具,第一行摆5个,第二行摆7个。
看着你摆的图,谁能提数学问题。
生1:比少几个?
生2:比多几个?
1、跳绳比赛。
小白兔和小猫在比赛跳绳,我们看看谁能赢?
小白兔比小猫多跳了下?
小猫比小白兔少跳了下?
2、采松果。
两只松鼠在比赛采松果,哪只松鼠采的更多呢?
3、钓鱼比赛。
三只小猫每人拿了一只水桶,一根鱼竿,你猜它们在比赛什么?
对在比赛钓鱼,它们可认真了?我们赶紧去看看!
看着这幅钓鱼图,你能提出哪些问题?小组比赛,哪一组问题提的多,答的好,就能获"星级小组"!
小组讨论汇报情况,教师及时评价鼓励。
现在我们来看看各小组得到了多少五角星,哪一组最少,哪一组最多?
你根据各小组的五角星能提出哪些数学问题?
如:第一组第二组第三组第四组。
生:第一组比第二组少1个;第四组比第三组多个,比第1组多2个……。
p73做一做。
学生教学设计的问题篇八
学习目标:
1、知识与能力目标:
能正确地朗读课文,并能分角色朗读课文,理解课文内容。学会生字新词,理解重点词语“燃眉之急、饥寒交迫”,会用“艰苦、燃眉之急”造句。
2、过程与方法目标:
能用批注式阅读方法品读课文,在阅读、批注的过程中了解彭德怀杀大黑骡子的原因。
3、情感、态度、价值观目标:
通过品读课文,感受彭德怀虽深爱大黑骡子,但更爱战士们的情怀,体会他与战士们同甘共苦的精神。
学习过程:
一、揭题设问,激发兴趣,感受将军伟大的人格魅力。
你指导共和国有哪些元帅吗?我们曾学过哪些元帅的事迹?
毛泽东曾这样地评价过一位元帅,“谁敢横刀立马,唯我彭大将军”!猜猜他是谁?
板书:彭德怀。
说说你所知道的彭大将军的情况。
今天,我们就一同走进这位军功卓著的将军。
补齐课题。这位军功卓著的将军与一个大黑骡子之间会发生什么样故事呢?
二、初读课文,整体感知,了解故事的梗概。
请同学们带着这样的问题去读读课文。可选择自己喜欢的方式去读课文,要读准子字音,认清字形,并能联系上下文理解词语的意思,说说课文的主要内容。
指名分节读课文,相机正音。
再读课文,画出不明白的地方,做上记号,准备提问。
交流读文情况,讨论质疑。
说说这篇课文的主要内容。“这篇课文主要写了一件什么事?”
三、提炼研读主题,理清文章脉络。
根据课文的主要内容,你准备研究什么?
指名说,归纳,提炼本文的研读主题:彭德怀为什么要杀自己十分喜爱的大黑骡子?
围绕这个研究的问题,你准备采取什么样的方法进行研究?
指名说。
读读课文,对于这个问题,其实课文有一节已经告诉我们了,找找看?(第三节)。
齐读,理解“燃眉之急”,并造句。
现在的“燃眉之急”指的是什么?(战士们一个个因饥饿而昏倒在地)。
为什么会出现这样的情况?
(读第一节)。
既然是“燃眉之急”了,那还等什么呢?赶快找能充饥的东西呀?
四、品读课文,感悟将军虽深爱大黑骡子,但更爱战士们的情怀。
现在唯一能解决的办法是什么?
那还等什么呢?赶快杀大黑骡子充饥呀!
这是一只怎样的大黑骡子?自由读体会,画出相关的语句,并作出批注。
讨论:“立过功”指的是什么?
“再立最后一次功”又指的是什么?
对于这样的一只大黑骡子,彭德怀对他有什么样的感情?战士们呢?
结合学生的交流,进行板书:十分喜爱。
既然彭德怀十分地喜爱它,他想杀吗?从哪些词语可以看出?
杀另外五匹马不行吗?为什么?
引读最后一段,说说你的理解。
五、总结课文,升华主题,受到情感、态度、价值观的熏陶和感染。
师:大黑骡子走了,悄无声息地走了,但它却永远地留在彭德怀和战士们的心中,激励着战士们奋勇向前,最终取得革命的胜利。
学到这儿,你觉得彭德怀将军是一个怎样的人?你想说些什么?可以是对彭德怀将军说,也可以对大黑骡子说。
学生教学设计的问题篇九
结合具体事例,经历自主解决打折问题的过程。
知道打折的含义,能解决有关打折的实际问题。
体验分数乘法在生活中的广泛应用,了解许多生活中的问题都可以用数学的方法来解决。
复习
我们前面学过了“求一个数的几分之几,用乘法计算。”我们先来做两道题,巩固一下
1、出示练习题:
15×4/5 = 7×5/21 = 1/4×80 =
2、交流结果。
我们去商场经常会看到某某商品一律几折出售。那么打折是什么意思?今天,我们继续学习关于分数的知识。(板书课题)
打折问题
1、打开书看课本上的情境图。
让学生说说了解到哪些数学信息。
2、你们知道六折出售的含义吗?
让学生知道“六折出售”就是按原价的十分之六出售。
3、师生共同计算出裤子六折出售的价钱。
4、鼓励学生独立计算其他商品按六折出售的价钱,并填在统计表中。
5、全班交流。
试一试
1、先让学生理解“按七折出售”和“现价”的意思,再提出“便宜了多少钱”,让学生独立进行计算。
2、全班交流。
练一练
打折问题
“六折出售”就是按原价的十分之六出售。
通过学生对生活中经常看到的打折问题入手,能够引起学生的共鸣。其次,通过看情境图让学生了解打折的含义。这样学生们在学习的时候就不会觉得陌生,很快就学会了。
学生教学设计的问题篇十
教学目标:
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:
“求相遇时间问题”的特征和解题方法。
教学难点:
“求相遇时间问题”的特征和解题方法。
教学用具:
多媒体课件一套。
教学过程:
一、激趣引入,复习旧知。
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?
2、口头列式1500/100=15分钟。
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间=路程/速度)。
二、学习新课。
读题分析。
思考:这里的460米是几个人走的?
两人是怎样走的.?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)。
学生尝试练习。
评讲板演,理清解题思路,概括解题方法。
教师板书:60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)。
=460/115。
=4分钟。
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少米?
揭示课题:求相遇时间。
2、试试。
三、变式深化。
1、对比练习。
比一比你能找到两题之间的联系吗?
2、变式应用。
四、小结。
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业。
练一练的第2——5题。
板书设计:
60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)。
=460/115。
=4分钟。
学生教学设计的问题篇十一
1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心.
感受“转化”策略的价值,会用“转化”的策略解决问题。
电子课件、实物投影。
预习效果检测分别出示两组图片。
(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。
学生得出:第一个图形:上面半圆向下平移5格。
第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。
教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。
师:你知道你刚才比较时运用了什么策略吗?
教师板书转化,将课题补全(用转化的策略解决问题)。
在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。
这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。
转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。
空间与图形的领域。
1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?
2、检查课本练一练,指名学生口答。
转化成什么图形可以使计算简便?怎样转化?
3、检查练习十四第三题。
4、试一试:1/2+1/4+1/8+1/16。
这道题你是怎样求和的?小组交流。
5、练一练4(课本练习十四1)。
每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。
三、当堂达标:完成补充习题对应的练习并交流反馈。
四、故事启迪,领悟转化的技巧。
数学家爱迪生求灯泡的容积的故事(幻灯片)。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。
爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
听了这个故事,你明白了什么道理?
五、课堂总结:
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。
学生教学设计的问题篇十二
1.学生通过观察、猜测、实验等活动,能找出最简单事物的搭配与组合。
2.学生通过自己动手摆一摆、拼一拼的活动,能够养成有序、全面地思考问题的意识和习惯。
3.学生感受数学与生活密切相连,在解决问题的过程中体验成功的乐趣,激发学生学习数学的兴趣。
多媒体课件、数字卡片、衣服卡片。
初步感受搭配的方法,体会有序思考的价值。
能够有序的进行搭配,用适当方式表达出搭配的过程与结果。
(一)创设情境,激发兴趣。
(二)问题探究,感悟有序。
1.(0,1,3,5能组成多少个没有重复数字的两位数?)。
小结:1.组成两位数时,0不能在十位。2.这样按顺序写,就可以不丢不漏不重复。
2.延伸巩固(0、2、4、6能组成多少个没有重复数字的两位数?)。
(三)衣服搭配,体会符号的简洁。
师:老师想送给王国的小朋友几件衣服,但是不知道怎样搭配,你们快来帮帮忙吧。
(四)巩固练习,应用方法,再次体会有序。
师:为了感谢同学们的帮忙,我为大家准备了早餐,看看都有什么?饮料和点心只能选一种。
(五)课下讨论:5个人,每2个人通一次电话,一共可以通几次电话?
(六)总结:同学们,今天我们帮趣味王国的小朋友解决了一些关于搭配的问题,最重要的是按一定的顺序,其实按顺序做事情,在生活中有很多好处,比如下课站队,出入校门,如果我们按一定的顺序,就不会拥挤不会出现踩踏件,对我们的学习和生活都非常有用。
学生教学设计的问题篇十三
一、教学目标。
1、教师单位教学目标。
(1)、通过生活中的简单事例,使学生初步体会到优化思想在解决实际问题中的应用。
(2)、使学生认识到解决问题的策略的多样性,初步形成寻找解决问题最优化方案的意识。
2、学生的学习目标。
能认识到解决问题策略的多样性,并能形成寻找解决问题最优化方案的意识。
二、学习任务。
任务一:探究沏茶各程序的最优组合方案。
三、检测工具。
检测一:114页第二题。
检测二:学生早晨起床要做的一系列事情如何安排最省时。
检测三:从生活中找到类似的例子说一说自己如何安排。
第二部分内容设计。
一、激情导课。
1、导入课题。
同学们,老师要去你家里做客,你欢迎么?
生:欢迎。
师:出于礼貌,你打算怎么招待我?
生1:我给您洗水果。
生2:我请您喝茶。
师:今天咱们就这位同学提出的招待方式来共同探讨其中的数学问题。(板书课题)。
2、明确目标。
生
1、我想了解沏茶的工序。
生
2、我想知道各个工序所用的时间。
生
3、我想知道这些工序怎么安排能让客人尽快喝上茶。
师将生提出问题的重点进行板书。
3、效果预期。
同学们,有信心招待好客人么?有。大家信心很足,客人的满意就是我们的终极目标,加油!
二、民主导学。
任务一:探究沏茶各程序的最优组合方案。
1、任务呈现。
(1)说一说:沏茶的工序有哪些及各个工序所用的时间。
(2)想一想:应该先做什么?再做什么。才能客人尽快喝到茶。
(3)摆一摆:用手中的纸卡摆一摆自己的安排方案。
(4)算一算:计算自己安排方案所用的时间。
(5)比一比:小组间比一比谁的安排方案最合理。
2、自主学习。
水1分钟、烧水8分钟、找茶叶1分钟、洗茶杯2分钟、沏茶1分钟)。
师:大家想到的和书上的小明想到的是一样的,他还在每一工序下标明了所需时间。谁来大声的读出他的工序。生读完后,师做出评价后提出任务一得第二个问题,怎样能让客人尽快喝到茶呢?接下来大家依照老师的任务要求进行自主学习。
3、展示交流。
(1)、一个工序一个工序的完成,用时14分钟。
(2)、按照洗水壶接水(烧水找茶叶洗茶杯)沏茶的顺序完成,用时11分钟。
(3)、按照洗水壶介绍(烧水找茶叶)洗茶杯沏茶的顺序完成,用时13分钟。
师在这里可以提醒学生用箭头连接每一工序。
生汇报完后,老师让学生找出最合理的安排方案并说明理由。
最后师将学生的汇报进行小结,是呀,在在做某件事时,能同时做的事情越多越节省时间,其实,在我们的日常生活和生产中,还有很多这样的例子。
三、检测导结。
1、目标检测。
(1)、课本114页做一做第二题,今天小红生病了,意思建议她吃药以后尽快休息,你能用学过的知识帮小红合理安排一下么?你的安排用了多长时间,和同桌互相说一说。(2)、小明早上起床后,洗脸刷牙3分钟,读英语20分钟,叠被子5分钟,整理书包2分钟,吃饭10分钟,听广播20分钟。想一想:小明应该怎样合理安排最省时间。
2、结果反馈。
请学生汇报自己的解决方案,通过比较得出最省时合理的安排,学生通过举手汇报自己的结果是否是最合理省时的。
3、反思总结。
同学们,这节课你有哪些收获?你遇到困难用了怎样的策略解决呢?
我们一起学习了合理安排事情的顺序、能同时做的事情同时做能节省时间,其实在生活中还有很多这样的例子,你可以找一找。
我希望大家通过这节课的学习,能够合理地安排自己的生活和学习,做一个珍惜时间的人!
第三部分辅助设计。
写有沏茶各程序的纸卡。
洗茶壶接水烧水沏茶合计时间。
1分钟。
1分钟8分钟。
1分钟。
找茶叶。
1分钟洗茶杯。
2分钟。
三、练习作业设计。
课后找可以用本节课学到的知识解决的问题。
11分钟。
学生教学设计的问题篇十四
《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标,任妮《重叠问题》教学反思。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的引领的教学理念。具体说有一下特点:
1、在问题的解决过程中,注重图、算式、文字的有效结合。
本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合,教学反思《任妮《重叠问题》教学反思》。,既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。
2、在了解、尊重学生已有的知识经验的基础上来确定合理的教学目标。
本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示,其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的',学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。
总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!
学生教学设计的问题篇十五
1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“鸽巢问题”的灵活应用感受数学的魅力。
重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
多媒体课件。
纸杯。
吸管。
一、课前游戏引入。
生:想。
师:我这里有一副扑克牌,我找五位同学每人抽一张。老师猜。(至少有两张花色一样)。
二、通过操作,探究新知。
(一)探究例1。
1、研究3根小棒放进2个纸杯里。
(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。(教师板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。
(4)“总有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)。
2、研究4根小棒放进3个纸杯里。
(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个纸杯里至少有2根小棒)。
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个纸杯里放进2根小棒”。
师:大家看,全放到一个杯子里,就有四个了。太多了。那怎么样让每个杯子里都尽可能少,你觉得应该要怎样放?(小组合作,讨论交流)(每个纸杯里都先放进一枝,还剩一枝不管放进哪个纸杯,总会有一个纸杯里至少有2根小棒)(你真是一个善于思想的孩子。)。
(6)这位同学运用了假设法来说明问题,你是假设先在每个纸杯里里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。
(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是。
3、类推:把5枝小棒放进4个纸杯,总有一个纸杯里至少有几根小棒?为什么?
把6枝小棒放进5个纸杯,总有一个纸杯里至少有几根小棒?为什么?
把7枝小棒放进6个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?
把100枝小棒放进99个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的小棒比纸杯的数量多1,总有一个纸杯里至少放进2根小棒。)。
5、小结:刚才我们分析了把小棒放进纸杯的情况,只要小棒数量多于纸杯数量时,总有一个纸杯里至少放进2根小棒。
这就是今天我们要学习的鸽巢问题,也叫抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?小棒相当于我们要准备放进抽屉的物体,那么纸杯就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。
小练习:
1、任意13人中,至少有几人的出生月份相同?
2、任意367名学生中,至少有几名学生,他们在同一天过生日?为什么?
3、任意13人中,至少有几人的属相相同?”
6、刚才我们研究的是小棒数比纸杯多1的情况,如果小棒比纸杯数多2呢?多3呢?是不是也能得到结论:“总有一个纸杯里至少有2根小棒。”
学生教学设计的问题篇十六
1、通过观察、思考、动手操作、合作交流等情境活动,在具体的生活情境中,使学生初步掌握合理有序的搭配方法和策略。
2、结合生活实际,培养学生有序思考问题的能力,使学生养成不重复、不遗漏的全面思考问题的习惯,培养学生解决生活中数学问题的意识。
通过合作学习来解决问题,并且感知:要做到既不重复,也不遗漏,就必须按照一定的顺序去进行观察与操作。
训练学生有序的思考能力和全面思考习惯。
(一)、创设情境、引入新知。
1、这节课我们一起来研究一个有趣的数学问题——搭配中的学问。
2、什么是搭配呢?搭配中又有什么学问和奥妙呢?认真学完了这节课,你们就明白了!
3、“营养配餐中心”的王师傅,交给我们三(5)班的同学一个任务,板书:配菜。
王师傅想在你们当中聘请一名优秀配菜师和两名优秀服务员,你们愿意参加应聘吗?
(二)、搭配菜谱、探究规律。
活动1:给星期一的菜谱配菜。
1、王师傅考大家来了,请看:
课件出示:星期一的菜谱。
荤菜。
肉丸子。
素菜。
白菜。
冬瓜。
2、星期一的菜谱里都有些什么菜啊?你们知道什么是荤菜,什么是素菜吗?
3、王师傅有个要求,请看:一个盒饭中含一个荤菜和一个素菜,你打算怎样配菜呢?
4、学生思考并与同座交流自己的想法。
5、还有别的搭配方法吗?你觉得这样一荤一素搭配好吗?
6、通过刚才的配菜,大家可以看出来,一个荤菜和一个素菜可以有几种搭配方法呢?在学生独立思考与交流的基础上,老师要注意有意识的引导学生学会用图例和方案这两种方法来表示出搭配的过程,但不必特别强求和硬性规定,让学生自由的选择,如果学生有其他有创新的方法,就推荐给大家。
活动2:给星期三的菜谱配菜。
1、星期一大家总结出有2种配菜方法,那么星期三呢,请看:
课件出示星期三的菜谱。
荤菜。
牛排。
鱼
素菜。
豆腐。
油菜。
2、如果你能用一荤一素的方法搭配好所有的菜,我王师傅将聘请你为本店的服务员。
(1)请同学在小组内试着配菜,并且把你的想法在小组上交流。
(2)哪个小组愿意把你们的配菜方法说给大家听。
(3)怎样搭配,才不会重复,又不会遗漏呢?
(4)怎样按着一定顺序搭配呢?有几种方法?
(6)其它同学也能按一定的次序进行配菜吗?把你的配菜方法说给同桌听一听。
(7)这两种搭配方法有什么相同和不同的地方?在教学过程中可以将这种配菜现象抽象为数学知识,以荤菜为准,每种荤菜和一种素菜都有2种搭配方法,有两种荤菜就有2乘2等于4(种)方法.
这次的活动都是2种要注意要回答这个问题时,要让学生发现如果你倒过来写这也只能算是一种方法,要注意学生理解成有4种搭配方法,这种错误的想法。
活动3:给星期五的菜谱配菜。
课件出示星期五菜谱。
荤菜。
肉丸子。
虾
素菜。
白菜。
豆腐。
冬瓜。
2、谁能第一个配出所有的菜,王师傅将聘他为我店配菜部的经理。
3、请同学们试着配菜,然后说给大家听。引导学生以一种菜为准与另一种菜搭配.
思考:通过刚才的配菜,同学们发现了什么规律?
让学生自由发现,然后小结:可以用荤菜的数量×素菜的数量=几种配菜方法。
板书:1荤×2素=2种。
2荤×2素=4种。
2荤×3素=6种。
(三)、实践应用、解决问题。
活动1:搭配路线。
2、说说:一共有几条路可以走呢?
(1)你能用字母表示出几条路线吗?
(2)哪一条最近呢?你能帮小淘气选一条吗?
(3)回来时有几条路线呢?你能用字母把路线表示出来?
活动2:搭配服装。
其实,不仅菜要搭配,生活中还有许多需要搭配的地方,笑笑要去外婆家做客,那衣柜里有这样几件衣服:两件是上衣,叫上装,两条裤子和一条裙子叫下装,一件上装和一件下装,要配成一套衣服可以怎样搭配呢?一共有几种搭配方法呢?在配菜的过程中,先让让用序号来表示衣服和裤子,便于叙述.
2、请你和同桌一起试着配一配。
3、那么今天下午笑笑穿哪套衣服去做客合适呢?为什么?谁来帮忙选一选。
4、看来穿衣服也需要搭配,搭配适当,会使我们生活更美好,更加丰富多彩。
活动3:握手中的学问。
(四)、联系生活、课后延伸。
这节课有什么收获?你想利用今天所学的知识设计一些有关搭配的其它问题吗?
学生教学设计的问题篇十七
:教材第70页例3及练习十三相关题目。
1.在理解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2.经历把实际问题转化为鸽巢问题的过程,了解用“鸽巢原理”解题的一般步骤,恰当运用“鸽巢原理”解决问题。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:能运用“鸽巢原理”解决实际问题。
教学难点:能根据题意设计“鸽巢”。
教学准备:多媒体课件。
(二次备课)。
1.课件出示下列问题。
(1)把5只鸽子放进4个笼子里,总有一个笼子里至少放进()只鸽子。
(2)把7本书放进4个抽屉里,总有一个抽屉里至少放进()本书。
2.导入新课:上节课我们了解了“鸽巢原理”,这节课我们就用“鸽巢原理”解决问题。
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)。
学生提出猜想。
分组讨论:如何把这道题转化为“鸽巢问题”?
这道题其实就是把摸出的球(鸽子)放在两种颜色的“鸽巢”中,结论就是有一个颜色“鸽巢”中至少有2个。
根据“鸽巢原理”(一),只要摸出的球的个数比它们的颜色种数多1,就能保证一定有2个球是同色的,所以答案是至少要摸出3个球。
有两种颜色,只要摸出的球比它们的颜色至少多1,就能保证有两个球同色。
2.引导学生总结用“鸽巢原理”解决问题的一般步骤。
(1)确定什么是鸽巢及有几个鸽巢。
(2)确定分放的物体。
(3)用倒推的方法找到答案。
1.完成教材第70页“做一做”第2题。
2.完成教材练习十三第3、4题。
一副扑克牌(不包括大、小王)有4种花色,每种花色各有13张,现在从中任意抽牌。
(1)最少要抽(13)张牌,才能保证一定有4张牌是同一种花色的。
(2)最少要抽(14)张牌,才能保证一定有2张牌是不同种花色的。
(3)最少要抽(14)张牌,才能保证一定有2张牌是数字相同的。
今天我们通过学习进一步理解了“鸽巢原理”,并运用它解决实际问题。
教材练习十三第5、6题。
独立回答问题。
教师根据学生预习的情况,有侧重点地调整教学方案。
独立思考后,在小组内讨论怎样用“鸽巢原理”解决这些问题。
学生教学设计的问题篇十八
数学广角中的《烙饼问题》, 其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力。
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。感觉效果不错。
重点:优化的思想——“同时”“节省时间”
小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”。因此,在教学中我借助所给的条件“一口平底锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“三张饼”“四张饼”……的“最优方案”打好基础,使学生“保证每次都能烙两张饼”。
难点:规律的得出——“饼的张数×烙一张饼的时间=烙饼所需最少的时间”
突破这个难点时,我把“力气” 都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生借助手中学具试一试,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“保证锅内每次都能烙两张饼”才是最优方案,所用时间“9分钟”才最少。
“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到“张数为双时,两张两张的烙”“张数为单时,先两张两张烙,剩下的三张同时烙”,那么烙再多张数的饼学生也不再会有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=烙饼所需最少的时间”的规律,所有的问题迎刃而解。
数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。
四年级数学下册《烙饼问题》教学设计
人教版四年级上册数学第105页例2。
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼的烙法。
多媒体课件、圆形纸片若干。
一、直奔主题
同学们,今天我们一起来研究一个有趣的数学问题。
二、探究新知
1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。
2、研究烙一张饼需要的时间。
师问“烙一张饼需要多长时间?”学生口答说想法。
3、研究烙两张饼需要的时间。
师问:“烙两张饼需要多长时间?”学生口答说想法。
4、对比烙一张饼和烙两张饼需要的时间。
师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”
生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。
5、研究烙三张饼所需要的时间
师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”
学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。
学生先演示,师再示范摆。
小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。
6、研究烙四——七张饼所需要的时间。
教师依次提出问题,生或口算或演示。
7、寻找规律
师:认真观察上面的表格,你能发现什么?
学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的时间都等于烙饼的张数*烙一面饼所需的时间。
8、点明课题
师:这就是我们这节课要研究的烙饼问题(板书课题)
在学生解释图意的基础上用投影整理出以下三条:
生1:每次最多只能同时放两张饼。师:什么意思?
生2:一个饼的两面都要烙,烙一面需要花3分钟。
2.思考烙2个饼
这时,来了一位顾客,他要买3张饼。怎样才能尽快把3张饼都交给顾客呢?今天,我们就一起来研究有关烙饼的问题。(板题:烙饼问题)
二、合作实践,探究新知
实践活动(一):探究烙3个饼(13分钟)
(1)小组合作,摆一摆。
师:同学们,请你来当大厨,你想怎样烙?
先独立思考,然后4人小组讨论交流,说说你是怎样安排的,你的方案一共需要多长时间烙完,可以拿出烙饼卡,把书本当平底锅烙一烙。开始。(师巡视)
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
(最优方法没有出现)
师;我想采访一下大家:对这两种方法,你有什么看法?为什么第二种比第一种省时间?
生:第一次放两张饼,更好的利用了锅的空位。 师:那烙第三张饼的时候呢?引导发现有一个空位没利用起来,这里可能浪费了时间。
师:想一想,会不会还有更好的方法呢?
启发学生发现:让锅里每次都烙2张饼。
同桌合作探究最优烙法,汇报(交替烙)。
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
3.用三张饼的最优方法烙。(交替烙)
师:谁还能再说一次这种烙法?(课件演示)
你们有好几种烙饼的方法,真是爱思考的孩子,这说明解决问题的方式可以是多种多样的。(板书:方法多样)
但是我想采访一下大家:对这三种方法,你有什么看法?
师小结:看来,充分利用锅的空间,不留空位,就能节省时间。
其他同学也能像这样用9分钟烙好3张饼吗?
同桌两人合作,用这种方法再试一试。师巡视
理解并掌握烙3张饼的最优方法。
小结:同学们通过思考、操作,不但想出了多种解决问题的方法,还会通过比较,找出最优的方法,真是爱动脑、会动手的好孩子!你们让我想起了一句话:条条大路通罗马。我想给它接下半句——可能有条路最近。最节省空间、时间的路,就是最近、最优的路。(板书:寻求最优)
实践活动(二):探究烙4、5张饼(6分钟)
这时又来了两位顾客,分别要买4张、5张饼,怎样尽快把饼给他们呢?小组合作,讨论一下怎样安排,需要的时候也可以用卡片摆一摆,把相关的内容填入表格中。
1.请同学上台,展示烙4张饼的过程。还有没有别的方法?(板书用时)
师小结:4张饼,能两张、两张的同时烙就不交替,是最方便的方法。
2. 说说怎样烙5张饼,(板书用时)引导明确:先同时烙两张再交替烙三张,即分成2+3,最方便最省时间。
师:刚才我们边活动边把学习成果整理成了一个表格,同学们,相信你们已经找到了解决烙饼问题的钥匙。 (课件出示)
实践活动(三):算出烙6、7、8、9、10张饼的时间(6分钟)
1.填表。接下来,烙6、7、8、9、10张饼的最短时间,能与小组成员合作直接填在这张表中,并说说怎么烙吗?汇报最短用时,并说烙法。
2.优化。我要向你们请教一下,为什么你们填得这么快?你们发现了什么?
那现在,谁能快速地说出烙15张饼最少需要多长时间?怎么烙?20张饼最少需
要多长时间?怎么烙?真是反应迅速的小机灵!
三、结合生活,知识拓展。(2分钟)
刚刚我们找到了3张饼的最优烙法,可有人觉得把饼拿来拿去太麻烦,还想出了更好的办法,知道是什么吗?当当当当,就是它——电饼铛。上下两面可以同时加热,实现了1个饼只需烙3分钟。对工具进行改造,也能更好的利用空间,节省时间。希望你们将来也能创造出节省时间的新发明,那我会很高兴的!
四、课堂总结(4分钟)
师:同学们,这节课你有什么体会和收获?
小结:在生活中,我们经常会碰到类似的问题,例如出门旅行要考虑选择怎样的路线和交通工具,才能使旅行花钱更少或者花的时间最短;在各行各业,选择最优的方法也能大大提高效率。这种想法是我国数学家华罗庚爷爷提出来的,有兴趣的同学可以在课后继续去了解和研究。
希望大家在今后的学习和生活中,也能用自己的慧眼多发现问题,解决问题,更好的利用时间。下课!
学生教学设计的问题篇十九
1.生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
2.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
一、创设情境,激发兴趣。
1.谈话:同学们,元旦快到了,你们高兴吗?(高兴)为了迎接新年的到来,我们学校举行了一次游园活动。小朋友你们想不想参加?(想)好!老师就带小朋友们一起去参加游园活动,我们唱着歌出发好吗?(唱新年快乐歌)。
2.情境图。
谈话:我们来到了游园点,你们看小朋友们在做什么?(在看木偶戏)。
提问:你从这幅图上看懂了什么?获得了什么信息?
学生回答:原来有22人在看戏;又来了13人;走了6人。
二、主动探索,协作交流,领悟解法。
1.同学们,你们看得真仔细,通过这些信息,你能提出什么数学问题?
(1)原来有22人在看戏,又来了13人。一共有多少人在看戏?
(2)原来有22人在看戏,走了6人。还剩多少人?
对于这两个问题,让学生提出后很快就解答。
(3)原来有22人在看戏,走了6人,又来了13人。现在看戏的有多少人?
(4)原来有22人在看戏,又来了13人,又走了6人。现在看戏的有多少人?
对说出(3)(4)两题的学生给予表扬。
提问:你们会解决“现在看戏的有多少人?这个问题吗?
(1)独立思考。
谈话:在四人小组中说说你的想法,你是怎样算的?
(2)让学生在四人小组中充分地交流,说自己的想法,老师参与学生的讨论之中了解情况。
(3)汇报:并说想法。
3.把学生解决问题的方法记录在黑板上。
(1)22+13=35(人)(2)22-6=16(人)。
35-6=29(人)16+13=29(人)。
(3)22+13-6=29(人)(4)22-6+13=29(人)。
让学生明确(1)、(3)的解题思路是一样的,是同一种方法;(2)、(4)的解题思路是一样的,是同一种方法。
4.比较(1)、(3)和(2)、(4)两种方法的联系。
明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。
5.谈话:小朋友们看木偶戏看得多高兴呀!你们看这边发生了什么事情?(出示练习一的第1题)。
提问:从这幅图上你看懂了什么?
你能把图意说完整吗?
让学生说明图意,明确计算的问题后,独立列式解答,再让几名学生说解。
问题的方法。
谈话:同学们,你们玩得高兴吗?不知不觉到了中午,我们肚子有点饿了。走,老师带你们到面包房买面包去。
(出示面包房图)。
提问:你从这幅图上看到了什么?
你能提出什么数学问题?(还剩多少个?)。
谁能把这个问题说完整?
(原来面包房里有54个面包,先卖了22个,又卖了8个,现在还剩多少个?)。
提问:谁会列式解答。
提问:你会把22+8=30和54-30=24写成一个算式吗?
你们遇到了什么困难?
有办法来解决这个困难吗?
四人小组讨论,汇报。
选择方法,把想的过程说出来。
三、巩固深化,应用拓展。
1.谈话:游园活动快要结束了,你们看小朋友在干什么?(出示练习一的第2题)[他们在收集拉罐筒。]他们真是环保小卫士。
提问:你会把这幅图的图意说完整吗?
让学生自己解答,再说想法。
做练习一的第4题。学生独立完成,再汇报想法。
同桌交流,自编题目,互相解答。
四、归纳。
1.请同学们说一说,这节课有哪些收获?
2.谈话:请同学们做一名有心人,用本课学习的知识去解决我们身边、生活中的实际问题。