最新数学建模的总结报告加心得体会 数学建模心得体会总结(优质11篇)
心得体会是对一段经历、学习或思考的总结和感悟。那么你知道心得体会如何写吗?下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学建模的总结报告加心得体会篇一
数学建模是一门综合运用数学知识和计算机技能解决实际问题的学科。通过这门学科的学习和实践,我深切体会到了数学建模的重要性和挑战。在这里,我将总结我的心得体会,以供他人参考。
首先,数学建模需要综合运用各种数学知识。在解决实际问题时,我们需要运用到的数学知识远远超过了课本上所学的内容。我曾经遇到过一个关于城市交通拥堵问题的建模任务,其中涉及到了概率论、线性规划、图论等多个数学部分。在解决问题的过程中,我才发现数学知识是如此的广泛和深奥。因此,数学建模不仅需要我们熟练掌握数学基础知识,还需要我们能够在实际问题中理解并运用多个数学分支的专业知识。
其次,数学建模需要良好的逻辑思维和创造力。解决实际问题是一项复杂的任务,需要我们不断提出假设、分析数据、建立模型,并通过数学分析得出结论。在这个过程中,我们需要运用逻辑思维去理清关系、找到规律,同时还需要发挥创造力,提出新的想法和方法。我记得有一次,我们团队解决一个有关环境保护的问题,我提出了一个较为新颖的数学模型,并得到了良好的结果。这次经历让我明白,在数学建模中,创造力是非常重要的,它能够帮助我们发现问题的本质并得出更好的解决方案。
再次,数学建模需要团队合作和交流。在实际问题中,一个人很难完整地解决所有的细节和步骤。与团队成员共同合作,有助于把问题拆解、分配和解决。我的团队曾经遇到一个关于人口增长预测的任务,我们每个人负责不同的模型构建和数据分析。在合作的过程中,我们互相交流、讨论,结合各自的专业知识和经验,最终得出了准确的预测结果。团队合作不仅可以提高工作效率,还能够从不同角度和专业背景来解决问题,使得结果更加全面和准确。
最后,数学建模是一项需要不断学习和提升的技能。数学建模的知识和技巧都是可以学习和掌握的,但只有通过不断的实践和学习,才能真正掌握这门技能。在我的学习过程中,我参加了各种数学建模竞赛和项目,通过与其他优秀的选手交流和竞争,我不断发现自己的不足,并努力改进和提升自己。数学建模是一门实践性很强的学科,需要我们不断地学习新的技术和方法,并不断反思和总结自己的经验。
总之,数学建模是一门需要广博的数学知识、良好的逻辑思维和创造力的学科。通过团队合作和不断学习提升,我们能够更好地解决实际问题,并得出准确的结论。数学建模的学习经历让我深刻体会到了数学的魅力和广阔,我相信在今后的学习和工作中,数学建模将继续起到重要的作用。
数学建模的总结报告加心得体会篇二
不知不觉一个学期的工作走向了尾声,本学期我社团在院领导及老师的带领下开展各项活动,并取得了一些成绩,同时也发现了新的问题,现将本学期的工作进行总结如下:
本学期社团工作一开始,我们就针对上学期工作中出现的问题对章程进行了进一步完善。而且为了让成员更加了解社团、进一步严明纪律以更好的提高社团的工作效率,通过理事会研究决定将章程书面化,并由部长组织部内成员学习。
为了更好地参加9月份“全国数学建模大赛”,协会建立了学习群并开展了相应的培训。
1、加强成员之间的交流;
2、做好数学建模及数学实验选修课的工作;
3、了解“数学建模大赛”的动态;
4、做好“数学建模大赛”的报名及培训工作。
(一)数学建模选修及数学实验选修开展工作
数学建模及实验是我社团指导老师针对我学院及社团的需要开设的选修课程,有助于成员学习并了解更多的建模知识。
(二)思维锻炼及团队意识培养活动古希腊雅典神庙上有句箴言:“认识你自己。”古罗马大哲西塞罗说:“每个人都对自己了解最少。”他们的提示适用于我们对右脑的认识和对自己的了解。那么我们又要如何的去锻炼我们的思维呢?一根线,一张纸,几根细竹,几笔色彩,就构成了理想的框架。理想期待同学们放飞,期待青年娇子傲视大地,向目的地奔驰。放风筝的户外活动让同学们放飞了梦想,并树立了为实现梦想而努力奋斗的信心。数独技巧讲座更是了大家缓解紧张的学习和生活带来的压力,感受到了数学的乐趣,展现了社团成员们的昂扬风貌。
(三)首届“大明眼镜”杯数独大赛
为响应我党建党90周年及我学院成立10周年,我社联合兄弟社团特举办首届数独大赛。通过此次比赛丰富我校大学生的课余生活,拓展大家的思维能力,增强同学们的逻辑思维能力和推理能力,让大家对数学的学习兴趣更加浓厚。本次比赛共有180余人参加,经过紧张激烈的角逐之后,最后信息学院的李凯跃同学以17秒的优势夺冠,获得二等奖的是理学系戈苑、李小丽同学;三等奖信息学院王健、理学系董全苗、王通同学;优秀奖信息学院赵鹏飞、庞浩淼、苗成森及管理学院柴晓玲、王蕊同学。
(四)“全国数学建模大赛”的报名及培训
6月份我社团在理学系的带领下面向全院展开了“全国数学建模大赛”的报名工作,并于7月8号到7月14开展为期一星期的第一期集训,使同学们自身有了一定的提高,为9月9日到12日的比赛打好基础。
总体而言,通过本学期多次活动的举办,使我社团在各方面都有了一个很大的提高。首先理事会成员的组织能力与责任心上得到了进一步的提高,再就是为我社团培养出来一大批责任心强的创业人才,并且在工作任务的分配上也能使每一个会员都有事可干。总而言之,我们这一学期的进步是巨大的,但是还是存在几点瑕疵:
1、部分理事会成员的领导能力有待提高;
2、大型活动的组织能力上还有待提高;
3、社团内成员的凝集力还是不够;
4、社团的执行力还差的远;
5、各部门间的配合严重不足。
上面的四点也就是本学期我们暴漏出的问题,也是影响我社团进步的关键因素之所在。希望我们能在下一学期中得到改进,让我社团能够“百尺竿头更进一步”。
数学建模的总结报告加心得体会篇三
以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。
百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。
经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给我们再现了一种“微型科研”的过程。它激发我们学习数学的兴趣,丰富了数学探索的情感体验;有利于我们自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于我们体会和感悟数学思想方法。
记得第一节课时,老师给我们解释什么是数学建模,老师举了一个简单的例子,“问题:树上有十只鸟,开枪打死一只,还剩几只?”,当时我们都觉得很奇怪,这问题很高深吗?这和数学建模有什么关系吗?紧接着老师就给我们解释了这道题,“是无声手枪或别的无声的枪吗?不是。枪声有多大?80—100分贝。那就是说会震得耳朵疼?是。在这个城市里打鸟犯不犯法?不犯。您确定鸟里真的没有聋子?没有。有没有关在笼子里的?没有。边上还有没有其他的树,树上还有没有其他的鸟?没有有没有残疾的鸟或饿得飞不动的鸟?没有。打鸟的人眼有没有花?保证是十只?没有花,就十只。有没有傻得不怕死的鸟?都怕死。会不会一枪打死两只?不会。所有的鸟都可以自由活动吗?完全可以。如果您的回答没有骗人,打死的鸟要是挂在是挂在树上没掉下来,那么就剩一只,若果掉下来,就一只不剩。”这就是数学建模。从不同度思考一个问题,想尽所有的可能,正所谓智者千虑,绝无一失,这才是数学建模的高手。然后,老师讲了数学建模能力的培养与提升,让我们感觉到,原来学好数学建模并不是一件简单的事靠的是分析题意的能力、查找资料的能力、建立数学模型的能力、问题的转化能力、现学现用的能力、编程能力、论文写作能力等多方面的能力。
数学建模学习心得篇【2】
数学建模论文也有固定的结构,其中包括摘要、问题重述与分析、问题假设、符号说明、模型建立与求解、模型检验、结果分析、模型的进一步讨论、模型优缺点等一系列的步骤。与此同时数学建摸论文的模块设计也有固定的格式,问题的背景、问题的重述、基本假设与符号说明、问题的分析与模型的准备、模型的建立、模型的求解、模型的检验、模型的灵敏度与稳定性分析、模型的科学性及现实意义、模型的使用说明、模型的进一步讨论与改进、模型评价与推广、写给__的意见、参考文献、附录等。紧接着老师又给我们讲述了数学建模论文的一系列写作技巧,让我获益匪浅。
数学建模中常用算法有很多种,1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合参数估计插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)3、线性规划整数规划多元规划二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划回溯搜索分治算法分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)
但是数学建模到底是什么样子的,举几个例子:例子一:三个学生住旅馆,服务员收费30元,于是三个学生每人交了10元。后来老板对服务员说当天特价,只用收25元,要服务员把多的5元退给三人。爱贪小便宜的服务员想:“5元给三个人也不好分,自己留下2元,给他们一人一元正好。”于是,服务员退还了学生3元并私吞了2元。现在的结果是:每个学生只出了9元,一共27元,加上服务员的2元,才29元。剩下的1元钱哪里去了?我们先从最易理解的角度考虑,三位顾客付了30英镑,其中25英镑是餐费,3英镑是找头,2英镑是小费。于是??这个等式完全成立,并且不存在丢失钱的问题。但这种分析却不能打消困惑者的疑惑。27-2=25.这是个有意义的加法公式,27+2=29,纯属不三不四的胡扯,用来混淆视听,迷惑人。只是由于结果及其接近30,从而使人相信这两个数字是有着紧密连续的,实际上这个式子没有任何意义。
数学建模学习心得篇【3】
首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。
新一轮的基础教育课程改革经过近几年的实施与推进,新课程的理念已逐步被广大教师接受和认同,在教学实践的不同层面都得到了不同程度的体现与落实。作为课程改革的主阵地和落脚点——课堂教学,却还有或多或少的不尽如人意的地方。所以我们的课堂教学有必要依据新课程理念,建立符合实际的教学模式。反思我们的现在推行的解决问题课堂教学模式,不难发现与新课程改革的要求基本一致,有着诸多优点,主要表现在以下几个方面:
一、借助学生的生活经验,创设和谐课堂。
大量的研究表明,和谐的课堂学习环境可以有效的激发学生的学习兴趣,提高学习效率。在和谐的课堂学习环境中,学生的精神状态自然就会调整到最佳,并能随教师一起很快的进入到学习中来,从而实现课堂的高效。本次建模研讨中的两节均能从学生的生活经验出发,来灵活创设学习情境,激发学生的学习动力,实现了和谐课堂的创建,为下面数学活动的展开做好铺垫。
二、创设学习情境,激发学生参与数学学习的内在动力。
通过本次研讨活动,我深深的感受到:把学生的数学学习活动置身于一定的学习情境之中,把知识的学习寓于情境之中,能最大限度的提高学生的参与度,提高学生的学习效率。在我们推行的这一模式的实施中,能明显的看出教师作为学生学习的组织者、合作者、引领者的教师,能为学生创设一个放飞心灵、获取知识的园地,能在我们的课堂中把学生知识的获取、能力的发展、情感的体验、个性的张扬尽可能的融合到一起,尽可能的激发学生的学习积极性,激发学生学习的兴趣,充分发挥着学生在学习中的主体作用。例如:李艳秋老师执教的《相遇问题》一课中,教师提供的饿“送文件”这一学习情境,学生的就在这一情境中展开数学学习活动,在经历自主探究、合作交流、质疑建构中体验数学学习活动的乐趣,在体验探索中自主获取知识,积累数学活动的经验。
三、提供开放的课堂环境,放手让学生自主学习。
新课程改革倡导我们的数学课堂应该是面向全体学生,强调学生自觉参与的过程,反对以往教师在课堂中的“权威地位”。在这两节研讨课中教师尽可能为学生创设具有接纳性、宽容性的开放课堂,创设具有开放性的学习情境、问题引领等,来促使学生全身心的投入到学习中,让学生真正的做到动眼、动手、动口,实现课堂效率的有效、高效。例如:周宏娟老师执教的《百分数应用三》,让学生拿出课前调查的一个家庭支出情况的相关信息,让学生独立提出问题,自主尝试解决,在这样开放的学习环境中学生是可此不彼,积极参与,课堂的效果亦是很高!
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数
学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
总之,数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。中学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导中学数学教学显得愈发重要。
数学建模的总结报告加心得体会篇四
5大学生数学建模竞赛工作总结与探讨
“高教杯”全国大学生数学建模竞赛是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激发学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
自从20xx年在我国开展大学生数学建模竞赛以来,越来越多的大学生对这项竞赛感兴趣。从20xx年起这项竞赛已被国家教委规定为全国大学生四大竞赛之一,目前,这一活动已成为国内规模最大的大学生课外科技竞赛活动。
全国大学生数学建模竞赛是高等院校学生展示自身能力的一个平台。在这个平台上,大学生们不仅仅是运用数学方法和计算机技术解决实际问题,更重要是锻炼了他们分析问题、解决问题的能力,同时也开拓了知识面,培养了他们的创新思维和团队意识。新疆工业高等专科学校从20xx年参赛以来,由于领导支持、组织得当,在历年的竞赛中取得了骄人的成绩。总结我校十几年来参加数学建模竞赛的经验,主要有以下几个方面:
一、领导高度重视数学建模竞赛活动
我校在全国大学生数学建模竞赛中取得优异的成绩,和学校领导给予的高度重视是密不可分的。在20xx年就成立了“新疆工业高等专科学校数学建模领导小组”和“数学建模指导小组”协调各项工作。同时开设数学建模选修课,学校出台了参加建模竞赛的补助及奖励办法。近几年学校专门购置计算机,成立了数学建模竞赛专用实验室。集训和竞赛期间,学校、教务处和基础部领导亲自动员并多次亲临现场看望。各级领导和有关部门的重视及支持是这项竞赛能取得成功的重要保障。
二、组建了一支强有力的辅导教师队伍
在数学建模培训中,辅导教师是核心。辅导教师也是保证培训效果和竞赛成功的关键因素。十几年来,我们辅导员队伍始终保持业务素质高、乐于奉献、具有团结协作的精神。每年五月份开始集训,到九月初结束,大家都放弃了周六、周日休息时间进行培训。尤其暑假十天的集训,在高温的情况下给学生上课,从未有任何一名教师争报酬、讲价钱。另外,“传帮带”已在辅导员队伍中形成惯例,现在的辅导员队伍中除了有一批经验丰富的老教师,中、青年教师在该项活动中日渐成熟已可委以重任。在辅导员队伍建设中,我们还注意与兄弟院校进行交流,如邀请在建模方面有专长、有造诣的专家教授来校讲学,召开数学研讨会等。现我校已成为“新疆大学生数学建模培训基地”。
三、选拔优秀学生组队培训和竞赛
数学建模竞赛的主角是参赛队员,选拔参赛队员的成功与否直接影响到参赛成绩。我们首先在全校范围内进行动员报名,经过第一阶段的培训后选拔出参加暑期集训队员,暑期集训结束后通过模拟测试最终确定参赛队员。主要围绕以下几个方面选择队员:首先,要选拔那些对数学建模活动有浓厚兴趣的同学;其次,选拔那些有创造力、勤于思考、数学功底较好的同学;还有,注意参赛队员能力搭配和团结协作。
四、科学、系统的竞赛培训方法
经过十几年的摸索,我校已有了一套具有特色又实用的建模培训方法。培训共分三个阶段:第一阶段为基础知识培训阶段,包括:
(1)补充学生欠缺的数学知识(如运筹学、概率统计等);
(3)简单数学模型的建立及求解。第二阶段(暑假期间集中培训):数学建模中常用的方法和范例讲评,包括网络模型、运筹与优化模型、种群生态学模型、微分方程模型、随机模型、层次分析法、数据拟合、计算机仿真。第三阶段:历年建模试题评析、讨论,建模论文的撰写。通过三个阶段的培训,学生已经初步具备了参赛的能力,最终通过测试选拔出参赛队员。
五、重视参赛过程的指导和赛后总结工作
在学生参赛过程中,指导教师的及时指导是学生完成竞赛的保证。主要体现在以下方面:一是作好参赛学生心理方面的指导。在竞赛的三天里,要连续进行72小时的奋战,并且要与同组的队员合作,不可避免地会出现心理及身体方面的问题,因此指导老师会及时给与鼓励和关心,注意做好深入细致的思想工作,在整个培训过程中不断强调团结协作的重要性,这些将是学生完成竞赛的动力;二是作好论文细节方面的指导。在竞赛的最后阶段,指导老师会提醒学生注意论文的格式,检查是否按要求撰写论文,论文的摘要、关键词是否写得好,论文是否完整等。多年的竞赛经验告诉我们,这些细节常常成为论文是否取得好成绩的关键。
注重赛后总结,是逐步提高竞赛成绩的有效方法。竞赛后通过开会总结本年度的竞赛工作,参加竞赛学生交流竞赛经验、心得体会,开大会表彰、奖励获奖学生等系列活动,及时发现竞赛培训工作中的问题,总结经验,从而推动学校高等数学课程的教学改革,培养学生应用数学知识解决实际问题的能力,为逐步提高竞赛成绩打下良好的基础。
六、对建模竞赛工作新的探讨——以学生社团活动带动数学建模活动的日常开展
我校为更好地开展数学建模竞赛这一学生课外科技活动,进行了新的尝试和探讨。由学校基础部数学教研室牵头,成立了学生社团“应用数学社”,由于我校历年建模取得了优异成绩,此社团于20xx年被学校评为“精品社团”。社团骨干成员均参加过数学建模,对数学建模活动有热情,干劲十足,应用数学社以数学建模活动为依托开展各类与数学建模相关的活动。此社团覆盖面广,吸纳新老社团成员近1000人,遍及全校6大系部,有很大的影响力,这使得数学建模活动有了很好的群众基础。
应用数学社开展了一系列活动:
(1)举办了“关于数学建模”的讲座,使广大数学爱好者初步了解数学建模;
(4)在校园里营造良好的文化氛围、宣传数学建模知识。定期出版“社团简报”下发到各系各班,介绍建模知识及建模培训最新动态;制作宣传板、海报,还把参赛的心得体会和照片制作成展板,随时随地地向全校学生宣传数学建模活动;每次活动前后在校园网上都有相关的新闻稿件刊出,向同学们展示实时动态,同时还经常有社团骨干深入班级、宿舍进行动员、宣传。这一系列举措潜移默化地使我校学生逐步认识数学建模、了解数学建模知识,感觉数学建模并不陌生,而是与大家息息相关的,并使更多的人产生想要参加竞赛、大展拳脚的想法。
值得一提的是在应用数学社的大力宣传下,吸引了越来越多的不同层次的学生参与建模,民族学生也积极备战建模竞赛。我校从20xx年开始组织民族参赛队参加建模竞赛,三年共有4个民族队获自治区二、三奖,这在自治区高校中是独树一帜的!
开设数学建模课程、进行数学建模竞赛辅导、成立数学社团等等这些都表明数学建模是一个团结协作的过程。数学社团的成立,能聚集一大批志向相同的青年,再加以老师的引导、指导,势必能对数学建模活动起到促进作用。我们发现在有了常规的建模竞赛培训、组织参赛等一套完善“机制”同时,有了“应用数学社”这一学生社团的辅助,我校的数学建模工作迈上了一个新的台阶。20xx年全国大学生数学建模竞赛新疆赛区竞赛工作已结束。从新疆赛区组委会获悉,我校15个参赛队中有12个参赛队获奖,其中自治区一等奖4个、自治区二等奖4个、自治区三等奖4个,让人鼓舞的是4个自治区一等奖将被推荐角逐国家一、二等奖,一个民族队获自治区二等奖。
多年的建模实践证明,我校的建模竞赛工作是成功、有效的,建模竞赛活动的经验在其他院校得到了推广应用,也取得了优异的成绩。为推动数学建模活动在我校进一步发展,我们要开拓创新,克服困难,将日常的教学与建模培训紧密联系在一起,努力学习和工作,力争再创佳绩!
数学建模的总结报告加心得体会篇五
(河南科技大学 许光辉 李贵涛 蔡亚娟)
数学建模比赛虽然已经结束半年之久,但是整个参赛过程我们依旧历历在目。从参加学校的建模比赛,到暑期培训、全国大赛,到最终的答辩环节,其中的酸甜苦辣如今回味起来都已变成美好的回忆。
经过指导组老师的专业培训,尤其是郭春娜老师的悉心指导,我们组最终获得了全国二等。我们收获的不仅仅是一份荣誉,更多的是知识的积累和能力的提高。现在我们将整个参赛过程的体会作如下的总结:
一、团队精神。数学建模比赛靠的不是一己之力,拼的是集体的智慧。能坚持到最后参加国家赛,相对而言都是很优秀的队员,但是“众人拾柴”才能“火焰高”,只有三个人紧密配合才能做出最优的方案,最终提交的才不是三段互不衔接、支离破碎的论文。数学建模比赛有点累,尤其是到培训的最后阶段,又面临着被淘汰的压力,可谓是身心疲惫。此时,大家一定要互相鼓励和支持。遇到意见不一致的情况,大家要平心静气地商讨,或者找指导老师请教,万不能伤和气;一旦遇到尴尬的僵局,要及时调节。和谐的团队氛围能容易出成绩。
二、术业有专攻。数学建模考察的是大家的综合素质,譬如:建模能力、娴熟应用软件的能力和语言表达能力等等,3个人最好在平时的模拟时有所侧重。但是每个人都要对这几个方面有所了解,这样才能在遇到瓶颈时互相探讨,或者在一个人出现错误时,其他人能及时发现错误并纠正。
三、重视基础。每年的题目都在创新、改变,但万变不离其宗,考察的不外乎基础建模知识。所以只有很好地掌握了课堂上老师教授的方法,夯实了基础,才能在后期厚积薄发,有所图突破。尤其是如今我们学习专业课时,才发现这些建模方法使用频率非常高。假期的培训确实让我们受益匪浅。
四、广泛涉猎。正因为每年的题目都在创新,所以我们要不断涉猎新的知识,武装自己。在平时模拟的时候,多到万方数据库下载相关的文献看看,了解些学术前。有些这些文章看起来可能会晦涩难懂,我们“不求甚解”即可。看这些文献我们可能并没学到什么东西,但是能增强我们的信心。我们在正式比赛时,如果再去看文献就不会显得那么盲目和痛苦。
五、慎重选题。本科组有两个题目,选题是正式比赛的第一步。总所周知,决定成功的不是站的位置,而是所朝的方向。如果选题时出现方向错误,结果可想而知了。拿我们组举例吧,我们3人对经济的把握略多余物理,并且选择第2个题目的人比较少,相对竞争压力小,所以在第一天上午果断选择了《上海世博会影响力的定量评估》。
六、注意细节。细节不仅包括论文的格式,更重要的是内容上不能有硬伤。在遇到大家建模思路相同或类似的情况下,老师就会比较谁的细节处理的好,因此,不要忽视任何可能影响建模结果的细节。我们就是在答辩环节,老师直接挑出了一个致命的错误。
七、绝对自信。比赛结束之后,我们会发现:其实大家的建模能力相差无几。从校级比赛到全国大赛,这么长的战线,中途掉队的不再少数。掉队的原因很大一部分就来自不自信,总感觉自己“计不如人”。请在退却的念头萌生时,告诫自己:每一个坚持到最后的人都是成功者,每一个坚持到最后的团队都是胜利的组织。一定要绝对的自信,不能让自己如在eq上。
现在我们回忆起暑期培训的场景,仍然有种意犹未尽的感觉。指导组的老师每一个都认真负责,冒着酷暑、牺牲休息时间给我们上课;同学们个个激情四射,勤奋练习。培训期间的每一天都是充实和幸福的。不过,我们在此想给老师说两点改进办法:
一、希望老师在每次模拟答辩之后,能抽出部分时间分析一下题目。我们每个队的建模方法可能不同,请老师把比较好的建模方法及建模时的注意事项告诉我们。我们刚做过这个题目,此时的记忆比较深刻,效果会好一些吧。
二、希望老师把模拟题换成新题目,而不是历年的真题。大家都有惰性,如果用历年真题,我们很可能会上网直接搜答案,缺少自己的独立思考环节,除了锻炼了写作模式,对建模本身提高不大。
希望我们的这些总结能对下一届的“数模人”有所帮助。最后,请允许我们在此对建模指导组的所有老师们说一声:老师,您辛苦了,谢谢您!
数学建模的总结报告加心得体会篇六
主要是对需要解决的问题用自己的语言对问题的重要特征或者重点进行描述,言简而意赅,这个就看你自己的文笔功底了。
对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。
将你要建立的模型中的一些参量用符号代替表示。点状符号:以符号个体表达一定意义对象整体;线状符号:一般采用颜色、纹理、空间布局来表达一定的意义;面妆符号:用来表达呈面状分布于一定范围的现象。
利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。
解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。
数学建模的总结报告加心得体会篇七
地点和时间:c栋5052013年12月18日星期三
第一环节(演讲)30%
1、《什么是数学建模》
2、《数学建模的发展》
第二环节(游戏环节)30%
1、蒙眼作画
2、联想abc
第三环节(数学建模趣味知识又将抽答)40%
以上三个环节按所占百分比来计算最后成绩
每组选手最多两人
奖品:校级证书、笔记本、笔等学习用品。
数学建模的总结报告加心得体会篇八
本学期的教学教研工作伴随着新年脚步的临近,即将接近尾声。回顾这一学期的教学教研工作,有几分充实、几分忙碌,也有几分感概,本学期我们教研组结合“教学质量提升年”活动的进一步开展,本着“为学生服务,要自己提高”的理念,全体老师们发扬优秀教研组的传统,兢兢业业的工作。
从整体优化出发,加强教学工作的五个环节的管理。为进一步发挥教研组、备课组的功能,我组积极响应学校的号召,明确树立集体质量意识,信息资源共享,认真落实了集体备课制度,由备课组长负责制,抓好备课过程中的各环节。各教师的教案都较为规范,质好量足,在学校的教案检查中大部分教师教案优秀。课堂上认真上好每一节课,在课堂教学中落实素质教育,所有老师在教学过程中都时时考虑对学生进行学习指导,本学期重点是学习方法的指导,指导的要点是怎样听课、怎样做作业和怎样复习,为了能更好地体现学生的主体地位,要求教师引导学生参与教学活动,必须给学生自主参与活动的时间和空间,教学中以人为本关爱学生,学生满意度100%。全体教师在精选习题的基础上,认真做好批改工作,力求做到及时反馈矫正,讲求实效,学校作业抽查情况显示本组全体教师作业批改情况优秀。各年级都本着因材施教的原则,进行分层教学,培优补差。初一抓好起始阶段数学学习习惯的养成;初二抓好基础教学,培养数学素质;初三多角度训练学生的思维品质,提高数学解题能力。在全组老师的辛勤努力下,初中数学各年级成绩都有较大提高,特别是初20xx级,在*均分、及格率、优生率等各方面进步明显,初20xx级、初20xx级也有一定进步。数学竞赛成绩喜人:19人获全国三等奖;2人获省二等奖;11人获省三等奖;17人获市一等奖;20人获市二等奖。尽管付出了种种努力,但由于生源状况不尽如人意,各年级都还有需要进一步提高的地方,如初20xx级数学成绩的优生率和及格率较低等问题。
坚持每周进行教研活动,每次教研活动事先都经过精心准备,定内容、定时间、讲实效,多次组织学习教育理论和本学科的教学经验,充实教师的现代教育理论和学科知识。精心安排好青年教师的汇报课及其他教师的示范课抓好评教工作,对公开课严格把关,要求每一节公开课前都经过备课组的老师多次的研究和修改,每堂公开课后,全科组的老师都有进行认真的评课,我们科组的老师对评课向来非常认真,从不避丑,不走过场,不管你的资格有多老,你有多年轻,大家能本着对事不对人的原则,对有研究性的问题、有争议的问题都能畅所欲言,尽管有时争论的很激烈,但道理是越辩越明的,大家都确的通过争议都很有收获,以此推动本组的教研氛围。尽管日常教育教学工作十分繁忙,但老师们仍十分重视教育科研,有多位老师的论文在各级刊物发表,还有多位教师的论文获奖。
本组19名专兼职教师中,雅安市学科带头人一人,市骨干教师2人,市教坛新秀2人。高级教师3人,中级以上职称14人。为使新教师早日成长,具体安排了新能挂钩对象,老教师无私传授,新教师虚心好学,组内教研气氛浓厚。全组教师团结协作,凝聚力强,有良好的师德师风。本组多位教师承担了雅安市期末考试命题工作,还有一人承担了雅安市中考命题工作。青年教师成长迅速,组内年轻教师都积极参加各种进修、培训活动。彭莉老师获雅安市优质课一等奖;穆成辉老师获二等奖;彭莉、杨灵英、刘美、穆成辉老师论文分别获奖。
时光的脚步带领我们走过了一个充实而忙碌的学期。总结过去,展望未来,我们清醒地认识到身上肩负的重任,探索之路任重面道远,我们只有不断学习,不断地开拓进取,迎接更大的挑战。
数学建模的总结报告加心得体会篇九
计划数
招生数
理科
文科
男
女
男
女
成绩
成绩
成绩
成绩
济南
90
90
551
589
535
567
青岛
80
80
546
583
520
562
淄博
50
50
529
576
526
585
枣庄
70
65
521
569
502
570
东营
20
20
545
583
540
594
烟台
96
96
539
591
530
576
潍坊
88
94
544
589
538
581
济宁
94
92
509
567
491
552
泰安
70
70
515
584
505
562
威海
28
28
545
598
501
583
日照
22
22
550
594
501
574
莱芜
15
12
523
588
483
561
临沂
95
95
541
588
532
574
德州
53
53
546
582
513
571
滨州
28
28
550
587
537
585
聊城
30
34
558
583
544
576
菏泽
70
70
519
575
515
551
返回目录
数学建模的总结报告加心得体会篇十
全国数学建模大赛一、数学模型、数学建模与数学建模大赛简单地说:数学模型就是对实际问题的一种数学表述。具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决“实际问题的一种强有力的数学手段。
二、数学建模题型、方法与建模过程题型赛题题型结构形式有三个基本组成部分:
1、实际问题背景涉及面宽--有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个比较确切的现实问题。
2、若干假设条件有如下几种情况:蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
3、要求回答的问题往往有几个问题(一般不是唯一答案):数学建模方法:机理分析法从基本物理定律以及系统的结构数据来推导出模型。可分为:逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
常微分方程--解决两个变量之间的变化规律,关键是建立“瞬时变化率“的表达式。偏微分方程--解决因变量与两个以上自变量之间的变化规律。数据分析法从大量的观测数据利用统计方法建立数学模型。
回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
时序分析法--处理的是动态的相关数据,又称为过程统计方法。仿真和其他方法因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
数学建模的总结报告加心得体会篇十一
1退档和滑档的原因
滑档的原因是分数不够或条件不满足;退档的原因则有以下三方面:
一、分数因素:这类退档,是由考生成绩本身引发的。
二、生源已满:
1、专业已录满。
2、城市、县市生源已录满。
3、汉族已录满。
4、本校已录满。
三、结论性退档:
1、取消再阅,这种情况一般称为“死档”,往往出现在高分考生身上。
2、在高考过程中,因为舞弊行为被查处而直接退档。
2规避退档/滑档的方法
1.志愿填报前,认真查看招生章程
考生须认真阅读《招生章程》中的录取规则介绍,重点查看关于加分录取政策、专业级差、体检标准、单科成绩等信息。避免因为硬性条件不符而退档。严格对照《高校招生体检工作指导意见》相关条款,选报志愿要避开不予录取的专业。
2.深入了解平行志愿
平行志愿投档时,按考生投档分从高分到低分排序,依次检索考生所填院校专业组志愿。只要考生所填报的院校专业组志愿中被检索到符合投档条件的院校专业组,即向该院校专业组投档。投档后,其他所填报的院校专业组无效。如没有出现符合投档条件的院校专业组,则不能投档。
上述过程完成后,无论档案是否投出,均视为该考生已享受了本批次平行志愿投档机会。如果考生档案投档到某院校专业组后,因故被退档,将不再补投到该批次平行志愿的其他院校专业组。等于说在同个批次中,院校专业组只有一次选择的机会。
3.好学校的一般专业or一般学校的好专业,如何取舍?
在“专业(类)+学校”的填报模式下,其实专业和院校这两个因素是分不开的,有时候考虑专业,有时候考虑院校,这两个也是相辅相成的,包括我们现在的双一流大学,你是到双一流大学里边去读一个一般的专业,还是到一个一般院校里边读一个好的专业,这也是一种取舍。
有的学校虽然它层次不是太高,但是这个专业特别的好,比如法学专业,烟台大学的法学专业就非常好,仅次于山东大学,但是它比中国海洋大学、中国石油大学(华东)这些学校的法学专业都要好。如果有同学喜欢读法学的话,选择烟台大学肯定是对的,但是如果想到更好的平台上去,就会考虑中国海洋大学或者中国石油大学(华东),如果该同学不看重平台,只看重专业的话,可能烟台大学就比较适合他。这就要根据自己的喜好去做出决定了。