2023年小学数学求三角形面积教案(优质14篇)
教案的反思和调整是提高教学质量的重要环节,教师应该根据实际情况进行及时的修正和改进。教案的编写要根据学生的学习特点和认知规律来设计,做到因材施教。提高学生学习兴趣的教案范文,让学习变得有趣而富有成效。
小学数学求三角形面积教案篇一
作者:李胜国邮箱:lghmjl@作者单位:河北省临城县鸭鸽营乡忠信中心小学简介:课件名称:三角形、梯形基础知识及面积推导。
适用于人教版五年制数学第七册。
课件通过“基础知识”来演示说明三角形和梯形各部分名称及高的画法,
“巩固应用”中设计了三道练习题以巩固所学的知识。
说明:因为自己非常喜欢“枯枝”这个名字,所以在开头加了一个“枯枝作品”的动画。
相关课件:
小学数学求三角形面积教案篇二
教学目标:
1、通过练习,能较为熟悉地掌握周长和面积的计算,会进行单位名称的填写。
2、在学习解决问题的过程中,感受数学与生活的联系,表达在解决问题过程中的收获和体会。
3、通过反复练习,使学生在交流中增强应用数学的意识。
教学重点难点:
巩固长方形、正方形的面积计算。
教学资源:
投影仪、小黑板。
教学过程:
一、做练习八第1题。
1、出示题目,齐读要求,让学生实际指一指,摸一摸。
2、你能估计出课桌面的周长和面积吗?
3、同桌合作完成。
4、反馈交流。
二、做练习八第2题。
1、出示题目:
在括号里填上合适的单位名称。
(1)课桌长106()。
(2)一张邮票的面积是6()。
(3)一座塔高36()。
(4)一个房间地面的面积是14()。
2、让学生先独立完成后全班交流。
3、根据学生的作业情况,明确选择长度单位还是面积单位,再作出判断。
三、做练习八第3题。
1、先让学生独立算一算,填一填。
2、再指名说一说周长、面积的计算方法。
(板书)。
长方形的周长=(长+宽)×2正方形的周长=边长×4。
长方形的面积=长×宽正方形的面积=边长×边长。
强调:要求长方形的周长、面积必须知道它的长和宽;要求正方形的周长、面积必须知道它的边长。
四、做练习八第4题。
1、出示题目,让学生同桌讨论:这题该怎样计算?
2、全班交流。
3、提问:单位之间是怎样换算的?
五、做练习八第5题。
1、出示题目,让学生仔细看图和题目。
2、让学生判断要求的是面积还是周长。
3、学生独立完成。
4、交流时要求说说是怎样想的。
六、全课。
作业:完成练习册。
小学数学求三角形面积教案篇三
教学内容:
《面积和面积单位》是课程标准人教版实验教科书三年级数学下册第70至74页的内容。
教学目标:
1.在实际情境中,通过看一看、比一比、摸一摸的方式,让学生理解面积的意义。
2.在解决问题的过程中,使学生体会统一面积单位的必要性,认识常用的面积单位,并在活动中获得关于它们的空间观念,形成正确的表象。初步形成面积单位实际大小的表象。
3.通过观察、比较、动手操作,发展学生的空间观念,培养学生的观察、操作、概括能力、自学能力和估测能力。在小组合作的过程中,培养学生的合作意识和能力。使学生体验数学来源于生活并服务于生活。
教学重点:
理解面积的意义,认识面积单位并建立正确的表象。
教学难点:
1.建立1平方厘米、1平方分米、1平方米的正确表象。
2.在操作中体会引进统一面积单位的必要性。
教具、学具准备:
教具:
教学课件和1平方米的正方形纸,1平方分米的正方形,1平方厘米的正方形,长25厘米、宽15厘米的长方形,另一个长35厘米,宽10厘米的长方形。
学具:
每四人一组,长25厘米、宽15厘米的长方形;长35厘米、宽10厘米的长方形各一个,每组一袋学具,内有大小不同的正方形、长方形、圆形学具若干;每个学生面积为1平方厘米、1平方分米的学具各一个)。
教学过程:
一、创设情境、充分感知面积的意义。
1、感受物体的表面。
同学们,今天钟老师很高兴能和大家一起来学习。大家有信心来上好这节课吗?有信心的话咱们同桌之间击个掌,(孩子们击掌)我也来(老师加入学生的击掌中,从第一排开始从左向右依次与学生击掌,停留在与一个学生击掌的过程中)。老师的手掌面大还是他的大?(学生进行比较)同学们,请把你的手掌轻轻地放在数学书的封面上,比比看,数学书的封面大还是手掌面大。(学生进行比较)摸一摸桌面,比一比,桌面大还是数学书的封面大。比比看,桌面大还是黑板面大(师比黑板),比一比,教室地面大还是黑板面大。
师:刚才我们说手掌、数学书、黑板、教室地面都是物体,他们有的大,有的小,像这样物体的表面的大小,这是他们的面积(板书:物体的表面的大小就是他们的面积)。今天我们来研究面积(板书课题:面积)。
师:谁能举例说说什么叫面积?(师拿出数学书摸数学书的封面)如数学书封面的大小就是它的面积。
2、感受封闭图形的面积。
物体的表面有大小,平面图形有大小吗?
课件出示:
选一组你喜欢的图形涂上颜色,比较这组图形的大小,说说在比较中你发现了什么?
(学情预设:大部分学生都选择(1)或(3),不选择(2),适时提问,为什么不选择(2),学生会认为(2)的图形无法比较,因为这个图形是不封闭的。这时老师为了加深学生的印象可以让课件上的其余四个封闭图形进行铺展变色。)。
师:可见封闭图形也有大小。(板书:封闭图形)我们说物体的表面和封闭图形的大小就是它们的面积。
二、动手实践,探究新知。
(一)观察法。
师:孩子们,咱们来玩一个比大小的游戏。
直接出示两个非常明显的有大小之分的图形。
哪个面积比较大?你怎么比的?(板书:观察法)。
师:两个面积相差比较大的图形,我们只要观察一下就能直接比较出它们面积的大小。
(二)重叠法。
师:这两个看上去相似的图形,你有什么好办法比较出它们的办法?
预设:重叠法,移多补少法。
师:就听你的,我们用重叠法来比一比。
可以采用重叠的方法比较它们面积的大小。(板书:重叠法、移多补少法)。
(三)测量法。
出示两个面积接近但形状不同的长方形。
思考:用什么方法可以比出哪个长方形的面积小一些?为什么?
学生经过观察、重叠、割补都无法比较,激发认知冲突,怎么办?
(预设:学生可能会说用尺子量,比周长。学生猜测周长相等,面积也就相当)。
小学数学求三角形面积教案篇四
教学目标:
1.通过操作探究三角形三边关系,知道三角形任意两边之和大于第三边。
2.根据三角形三边关系解释生活中的现象,提高解决实际问题的能力。
3.通过积极参与探究活动,在活动中获得成功的体验,产生数学学习的兴趣。
教学重点:
知道三角形的三边关系,并运用到实际生活中。
教具准备:
小棒、记录表1、记录表2、多媒体课件。
教学过程:
一、复习导入。
生:b没有封口c的两个端点没有连接。
师:看来要围成三角形这三条边一定要做到。
生:首尾相连。
师:那老师给你3根小棒你能围三角形吗?都这么肯定能围?
二、操作探究,引入新知。
(学生活动)。
(教师板书整理)。
师:和他们小组结果一样的举手,不一样的举手。
生:2、6、8不能围成。
师:嗯,这里有问题了,我们先来标注一下。
那2、5、8这一组怎么没有围成三角形呢?
生:有两条边连不起来。
师:会围成什么样子呢?你的情况和我一样吗?到最后2和5这两条小棒还是没有连到一块,围不成三角形。(课件展示)大家再来看:2厘米加5厘米等于(7厘米)比下边的8厘米短。哦,这样的不能围成三角形。
师:那2.6.8这三根小棒到底能不能围成呢,咱们再重新认真地围一围。
(同桌两人一起操作)。
师:好了,认为不能围成的请举手,认为能围成的请举手,赶紧把你们的作品展示给大家看一看。你们还说围不成,这不是围成了吗?(展台展示学生作品)。
生:这个地方没连起来(学生到前边指)。
师:你们看见了吗?
生:看见了。
师:观察真仔细,这三条小棒没有做到首尾相连所以不是三角形。
师:仔细观察一下你围成的图形,认为自己围成的是三角形的举手。
都没有了,刚才还有很多,怎么现在没有了?
生:要不这边没连起来,要不那边连不起来。
师:那通过刚才的操作你的结论是。
生:围不成。
生:变成了两条线段。
师:这两条线段是(一样长的)。
通过刚才的操作演示我们确定了2、6、8这一组确实不能围成三角形。
师:同学们想一想,三根小棒一定能围成三角形吗?(课件展示)。
生:不一定。
生:与小棒的长度有关。
师:你们说的各不相同但是老师发现了你们都觉得与三角形的三条边的长度有关,那到底怎样的三条边能围怎样的三条边不能围?这节课我们就来探索一下三角形的三边关系。(板书课题)。
同学们对这个结果还有什么意见吗?
生:没有。
师:那接下来你还想研究什么?
生:为什么有的能围成,有的不能围成?
生:上边这两条加起来和另一条边相等、上边这两条边加起来比另一条边短。
生:上边这两条边加起来比另一条边长。
(学生活动)。
生:我们组选的是5.6.8这一组。
师:你们有什么发现?
生:我们发现两条边加起来都比另一条边长。
师:都是哪两条边呢?具体给同学们说一说。
师:也就是说这三条边我(随便两条边加起来都比另一条边长)。
是这样吗?我们看一下(课件演示)确实是啊,你们真棒,发现了这个三角形的秘密,那另一个三角形呢?谁发现了它的秘密?请你来?(展台展示记录表2)。
生:我们发现的和刚才一样,随便两条边加起来比另一条边长。
师:同意吗?
生:同意。
师:那通过刚才的研究,你能不能说说只要这三根小棒怎样就能围成三角形了?
生:随便两条边加起来比另一条长。
生:三个。
三、应用新知,解决实际问题。
课件展示题目。
1、5cm4cm6cm能围成吗?
三个条件都符合吗?我们一起来看一下。课件演示。
4+6的和大于5吗?5+6的和大于4吗?5+4的和大于6吗?
三个条件都符合,说明能围成。
2、2、4、6cm能围成吗?理由?会成什么情况。
3、这次老师要提高要求了,请你快速判断,行不行?
5、8、4cm。
师:又对又快,你是怎么判断的?
生:三个算式。
师:他是看了三个算式,都是这样想的吗?谁还有不一样的想法?
生:5+48。
师:他只看了一个条件。另外两个就不看了吗?为什么?
师:这个道理说得真好,看来咱们只看一个条件就可以了,看哪一个呢?
生:5+48。
5、6、9cm为什么?用的很好。
4、再来一个3、1、5cm能不能?为什么?会是什么情况?
生:任意选2条加起来。
师:从学校到少年宫有几条路线?走哪条路近?能不能用今天咱们学的知识来解释一下?
2条路线正好构成了一个三角形,第1条路线就是三角形2条边的和肯定大于第2条路线。
其实啊在我们生活中经常用到三边关系解决问题,课后咱们同学要多观察。
练习题三。
生:7+1018。
师:那同学们想一想,现在老师就给你7cm和10cm这2根小棒,请你再给它配上一根小棒,让它们能围成三角形,除了可以是8cm和10cm之外,这根小棒还可以是多长?注意一定要是整厘米数不能出现小数,把你找到的小棒的长度写在练习本上。
完成的同学请坐好,谁来说说你配了哪些长度的小棒。
生:6、5、4、3、2cm。
生:2、3cm不行。
师:为什么不行?
生:2+7103+7=10。
师:好,我把2和3擦掉。谁还想说?
生:大于4cm的都可以。
师:大于4cm的都可以,同意吗?
生:不同意,举个例子。
师:好,谁还有补充。
生:小于17cm。
师:17cm能围吗?
师:只要小棒的长度从(4cm到16cm)就可以了。
四、课堂小结。
好了同学们课上到这已经差不多了,想想这节课你有什么收获吗?
小学数学求三角形面积教案篇五
1.确定“转化”的策略。
预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
小学数学求三角形面积教案篇六
1、借助方格纸,能直接判断图形面积的大小。
2、通过交流,知道比较图形面积大小的基本方法。
3、体验图形形状的变化与面积大小变化的关系。
重点:面积大小比较的方法。
难点:图形的等积变换。
(一)新课教学
1、小组讨论:比较平面图形面积的大小。
2、小组内观察书中p16页的13幅图形面积。
3、你是怎么知道的,用哪种方法判断的?
5、判断方法:直接比较法、平移法、数方格法、拼凑法、割补法。
(二)练习:练一练p17
1、下面哪些图形的面积与图1一样大?(用分割和平移法来判断)
2、 3题(用拼凑法来判断)
3、 4题(用割补法来判断)
(三)总结
比较图形的面积
直接比较法
平移法
数方格法
拼凑法
割补法
本节课我是按照学生自学的形式开展的。学生通过观察、比较总结出图形间的关系,能判断出图形面积的大小。但用的方法最多的是数方格、平移和割补,学生掌握的情况一般。
小学数学求三角形面积教案篇七
义务教育课程标准实验教科书(西南师大版)四年级(下)第51~54页主题图、例1、例2及课堂活动第1~3题,练习十第1~5题。
1、通过实验,使学生知道三角形的稳定性及其在生活中的应用
2、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
3、体会数学与生活的联系,培养学生学习数学的兴趣。
掌握三角形的特性。
三角形的稳定性在实际生活中的应用。
木条制作的长方形和三角形、不条、三角板等
一、游戏导入
1.请两位学生到黑板前学交警指挥交通车时的各种动作姿势。
2.指名两位学生在黑板上画出刚才所观察交警的手与手、手与身躯构成的角。
多媒体出示生活中形状是三角形的物体,让学生观察后,你想探索三角形的哪些问题?
学生自由提问。
板书:意义、特征、特性
二、探究新知
(一)理解三角形的意义
1.学生用小棒任意摆出一个三角形。
教师出示几个具有代表性的图形:
(1)(2)(3)
学生讨论三个图形,是不是都是三角形?为什么?
刚才大家在判断上述三个图形是不是三角形时,都注意到三条线段,围成等这些重要条件(板书:三条段、围成),谁能说说什么是三角形吗?(由三条线段围成的图形叫三角形)
2.练习
(1)举出日常生活中见到的三角形。
(2)判断下列哪些图形是三角形,并说明理由。
(1)(2)(3)(4)(5)
(二)探索三角形的特征
(1)虽然三角形的形状各不相同,但也有相同的地方,谁能说说有哪些地方相同呢?(分组讨论)
(2)小组指定代表说说讨论的结果。
板书:边——3条
角——3个
顶点——3个
(3)让学生用自己的话说说三角形的特征。
学生阅读教材上的内容。
多媒体出示三角形,让学生指出三角形的边、角、顶点。
(4)学生指出三角板上的边、角、顶点。
(三)探索三角形的特性
多媒体出示电线杆、自行车、货柜架等实物图,让学生指出其中的三角形。
提问:为什么这些部位要做成三角形?(分组讨论后,指定学生回答)
这说明三角形具有什么特性?(稳定性)
举出生活中见到哪些物体的哪些部位是做成三角形的。
三、练习。
1.任意画一个三角形。
2.学生在钉子板上围出不同的三角形。
4.说说日常生活中哪些地方应用了三角形的特性?
四、小结:
这节课我们学习了什么?探讨了三角形的哪些问题?你有哪些收获?
板书设计:
三角形的特性
意义:由三条线段围成的图形叫三角形。
特征:边——3条
角——3个
顶点——3个
特性:稳定性。
小学数学求三角形面积教案篇八
六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。
我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下:
第一步没什么问题,每个教师都有自己的导入新课的方式。
第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习习近平行四边形时用的`是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。
[1][2][3][4][5]。
小学数学求三角形面积教案篇九
1.使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180,能运用这一规律解决一些简单的问题。
2.使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
3.使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。
课前准备。
多媒体课件,任意三角形,剪刀,纸,三角板,量角器等。
教学过程。
师:我们已经学习了三角形的分类,你知道三角形按角分可以分为哪几类吗?
生:三角形按角分可以分为钝角三角形、直角三角形、锐角三角形。
生:它们都是直角三角形,(拿起等腰的三角尺)这块三角尺三个角的度数分别是45、45和90;另一块三角尺的三个角分别是30、60、90。
生:一个三角形有三个内角。
师:这两个三角形三个内角的和分别是多少度?
生:都是180。
师:一个三角形中三个内角的和称为三角形的内角和。今天我们就来研究三角形的内角和。(板书课题)。
1.猜想。
学生活动后,反馈:你拼成的三角形是什么样子的?它的内角和是多少度?
生1:我拼成的三角形每个内角都是60,它的内角和是180。
生2:我拼成的三角形,三个内角分别是30、30、120,它的内角和也是180。
生3:我拼成的三角形,三个内角分别是45、45、90,它的内角和也是180。
师:从这一现象中,你能猜想一下,三角形的内角和可能存在的规律吗?
生1:我猜想三角形的内角和是180。
生2:我猜想钝角三角形的内角和比180大。
生3:不对。我拼的这个三角形(用两块三角尺拼成一个三个内角是30、30、120的三角形)就是一个钝角三角形,但它的内角和也是180。
师:还有不同的猜想吗?
师:研究数学问题就要像这样,既能大胆地猜想,又敢于对结论提出质疑。有人对三角形的内角和等于180这一猜想提出质疑吗?你能说清楚三角形的内角和等于180的理由吗?(没有人举手)是的,由猜想得出的结论往往是不可靠的,需要我们进一步去验证。
2.验证。
师:怎样验证三角形的内角和等于180呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。
学生分小组活动,教师参与学生的活动,并给予必要的指导。
师:哪个小组先来汇报,你们是怎样验证的?
小组1:我们小组每个人画了一个三角形,用量角器量,量出各个三角形的内角度数,再加一加,并列出了一张表格,(在实物投影仪上展示下面的表格)请大家来看一看。通过计算,我们认为三角形内角和是180这一结论是正确的。
小组2:我们小组把三角形的三个内角拼在一起,(边说边演示)我们发现三角形的三个内角正好拼成了一个平角,所以我们也认为三角形内角和是180这一结论是对的。
小组3:我们小组采用了折一折的方法。我们将正方形纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形的四个直角的和是360,所以三角形的内角和就是它的一半,是180。
小组4:我们小组采用的是拼一拼的方法。我们将两个完全一样的三角形拼成了一个长方形,长方形的内角和360,所以三角形的内角和就是它的一半,是180。
3.归纳。
师:通过刚才的活动,我们得出了什么结论?
生:三角形的内角和等于180。
师:刚才,我们是怎样得出三角形内角和等于180这个结论的?
生:我们是用先猜想再验证的方法得出结论的。
师:是的,猜想验证是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。
4.教学试一试。
师:知道了三角形的内角和等于180,就可以运用它去解决一些问题。我们来试一试。(出示试一试的题目)你能根据1和2的度数,算出3的度数吗?自己先算一算,再用量角器量一量,看与算出的结果是否相同。
学生汇报结果。
1.出示想想做做第1题。
师:你能算出下面每个三角形中未知角的度数吗?独立完成。
学生活动后,集体反馈。
2.出示下图。
生1:第一个三角形是锐角三角形,因为已知的两个角的和大于90了。
生2:第二个三角形是直角三角形,因为两个已知的角的和等于90。
生3:第三个三角形是钝角三角形,因为已知的两个角的和只有40,被撕去的那个角一定是钝角。
师:从这几道题中,还知道了什么?
生:在一个三角形中最多有一个直角或一个钝角。
师:大家的判断真是有理有据,算一算,每个三角形中被去撕去的角是多少度。
学生计算后校对。
3.出示想想做做第4题。
师:你能算出下面三角形中3的度数吗?
学生练习后,集体反馈。
4.出示想想做做第5题。
生2:因为直角三角形中有一个角是90,所以,两个锐角的和一定是90。可以直接用90减去1的度数,得到2等于55。
师:第二个直角三角形中,2等于多少度?
(略)。
师:今天你的收获是什么?你还有什么不明白的地方吗?你还想学习三角形的什么知识?
学生口答。
师:学习了今天的知识,我们还能利用它去研究一些更复杂的问题呢!有信心吗?(有)我们来看这样的问题。(出示第34页思考题)这个问题请同学们课后去研究,如果谁发现了其中的规律,就把你发现的规律写在黑板上,与大家共同分享。
小学数学求三角形面积教案篇十
教学目的:
1.通过教学向学生渗透认识来源于实践,服务于实践的观点。
2.使学生通过学习三角形内角和能解决一些实际问题。
3.进一步培养学生动手操作的能力。
教学重点:
对三角形内角和知识的实际运用。
教学难点:通过动手操作验证三角形的内角和是180。
教法:实验法,演示法。
教具准备:三种类型的三角形各一个。
学具准备:三角形纸片若干。
教学过程:
说说我们学过的有关三角形的知识。
在新课开始之前,我们先来做一个小游戏,请同学们在练习本上任意画一个三角形,量出它三个角的度数。
(生画,量)。
现在请你注意报上两角的度数,老师就能迅速的说出第三角的度数,谁想试试?
(生报,师速答)。
你们想不想知道老师有什么法宝,能这么快说出第三个角的度数?通过这节数学课的学习,你就可以揭开这个奥秘了。(板书三角形的内角和)。
看到这个题目,你想知道些什么呢?
生:三角形的内角和是多少度?
生:什么叫三角形的内角和?
生:我们学习三角形的内角和有什么用处?
通过这节课的学习,我们就要知道,三角形的内角和是多少度以及它在实际生活中的应用。
我们要学习三角形的内角和,就要首行弄清什么是三角形的内角和。
生:内是里的意思,内角就是三角形里面的角。
生:(边指边说)内角和就是将三角形里面的角相加的度数。
生:我还有补充。三角形的内角和是三个角相加的度数。
说的真好。我们来看自学提示:
1.锐角三角形的内角和是多少度?
2.直角三角形的内角和是多少度?
3.钝角三角形和内角和是多少度?
4.你从中能得出什么结论?
下面打开书p145,自学开始。
汇报自学成果。
生:我通过度量得到p145的第一个三角形的三个角的度数分别为它们的和是180。
生:我跟他的结果不一样,我量的三角度数分别为565074它们的和是180。
生:我度量结果是179。
180。
生:老师,我也是这样折的。
师:请你到投影上演示一下。大家看他演示,你们同意他的说法吗?
生:同意。
师:好。那么我们可以得出结论:锐角三角形的内角和是180。
(贴三角形,板180)。
(贴三角形,板180)。
360。再除以2,就得到直角三角形的内角和是180。
生:老师,我觉得他们的方法太麻烦了,我将我手中的钝角三角形的三个角撕下来,再把它们的顶点重合,也组成了一个平角,就可以证明钝角三角形的内角和也是180了。
师:你真有创新精神,你们得出的结论和他一样吗?
生:一样。
师:好。钝角形的内角和也是180。那么你从中能得出什么结论呢?
生:三角形的内角和是180。
生:我有补充,三角形按角分可以分为三类,钝角三角形,直角三角形呼锐角三角形。我们已经通过各种各样的方法证明了这三种类型的三角形的内角和都是180,所以可以得出上面的结论。
师:说的真好,我们给他鼓掌。(板三角形内角和是180)根据这个结论,如果知道了三角形中两个角的度数,就可以求出第三个角的度数。看投影。
在三角形中,1=78,2=44求3的度数。
迅速做出答案。
3=180-1-2。
=58。
生:老师,现在我也能根据两角度数迅速判断出第三角的度数了。
师:看来你已经掌握了老师的法宝了,谁来考考他?
(生考)。
师:你真聪明,我还要再考考你们。
(投影出示p146做一做)。
生:老师,三角形既然有内角,那一定也有外角了,什么是三角形的外角?外角和多少呢?
将三角形的一边延长,就得到了三角形的外角,三角形的外角是多少度呢?有兴趣的同学可以课后继续研究。
下面我们运用这节课学习的内容做几个小练习。(略)。
(生做,一生到投影上量,上下对照)。
2.抢答:
已知1,2,3是三角形的三个内角。
(1)1=382=49求3。
(2)2=653=73求1。
已知1和2是直角三角形中的两个锐角。
(1)1=50求2。
(2)2=48求1。
3.已知等腰三角形的一个底角是70,它的顶角是多少度?(一生到投影做,其余在本上做)。
4.思考题。
你能根据书中p149的17题推导出多边形的内角和公式吗?
(小组讨论)。
本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。
小学数学求三角形面积教案篇十一
尊敬的各位考官:
大家好,我是今天的x号考生,今天我说课的题目是《笔算除法》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
本节课选自人教版小学数学五年级上册第六单元第二小节《三角形的面积》的内容。在学习本课之前已经讲授了三角形的特征及平行四边形的面积计算和推导过程,这位本节课的学习奠定了知识基础,同时本节课的学习也为后面探究梯形的面积及组合图形的面积做了铺垫。因为本节课的学习与平行四边形的学习有一定的相似之处,因此,在本节课的教学中教师要注重启发式教学,注重引导引导学生探究、发现、归纳出三角形的面积计算方法。
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。此阶段的学生已经掌握了三角形的形状特征,并且刚刚学习了平行四边形的面积,知道可以将未知图形转化为已知图形进行求解。学生的动手操作及观察、分析能力也有了一定的发展,同时此阶段的学生还具备活泼好动、注意力不集中的特点。所以教学中我会充分考虑学生的已有知识经验及学生的性格特点,采用灵活多样的教学方式进行教学。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
探索三角形的面积计算公式,掌握三角形的面积计算方法,能应用其解决相应的实际问题。
(二)过程与方法。
通过三角形面积公式的推导过程,提升动手能力及小组合作能力,发展空间观念,渗透转化思想。
(三)情感、态度与价值观。
在探索活动中获得积极的情感体验,增强学习数学的兴趣。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:三角形的面积公式。教学难点是:三角形面积公式的推导过程。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。所以在这节课中我采用了激、导、探的教学方法。让学生带着问题学、在探索中学、在合作交流中学。在教学中积极培养学生的学习兴趣和动机,明确学习目的。
下面我将重点谈谈我对教学过程的设计。
(一)导入新课。
通过展示红领巾,让学生帮助我计算红领巾大小的问题,不仅回归了教材情境图,同时将教材情境图转化为学生身边真实接触的情境,可以让学生感受到数学知识在生活中的作用,进而激发学生对数学知识的学习情趣。
(二)讲解新知。
接下来是新知探索环节。
因为三角形面积的学习过程,类似于平行四边形面积的学习过程,因此在讲授三角形面积探究前,我会先引导学生回顾上节课学习的平行四边形面积的探究过程,学生能够想到将图形进行转化,进而我会让学生思考是否可以将三角形转化为已经学习过的图形的面积,进而得到三角形面积的计算方法。
我会让学生以小组为单位进行探究,思考如何将图形进行转化,并对比转化前后的图形,我会提示学生不要局限与看一个三角形,可以考虑看几个相同的三角形。同时我也会走到学生中间,观察学生的学习进度,对没有思路的小组我会及时给予提示。操作结束,找小组代表展示分享转化结果。
学生通过探究能够发现,在转化过程中需要用到两个相同的三角形,将相同的边拼接,另外两条相同的边相对,即可拼接出平行四边形。用两个相同的直角三角形还可以拼出矩形。
学生有了平行四边形的面积学习经验,在拼出已经学过的图形面积时,能够有目的的分析拼接前后图形间的联系,即三角形的底和高与拼接后的平行四边形的底和高对应相等,但是三角形的面积等于平行四边形面积的一半。在学生分析出前后关系之后我会让学生自己写出三角形的面积计算公式,并让学生给出字母表示形式。最后找学生分享结果即可。
我深知对于陌生事物的学习中,听到的不如自己探究得到的,同时基于新课标的要求:以学生为主体。因此在三角形面积公式的得出方面,我主要是要求学生自己探究得出,我之所以这样设置也是基于学生在此之前有平行四边形的面积学习经验,因此在这里是可以自己探究得出的,学生不易想到的地方是用两个图形进行转化,因此在这里我会少许给出提示,在学生能够自己总结出结论的地方,我就放手交给学生自己得出,最后找学生分享说明思考过程即可。
(三)课堂练习。
在学生探究出三角形的面积计算公式之后,关键是在应用部分,这里我先给出红领巾的底和高的数值,让学生进行计算。
学生在知道数值之后直接代入面积计算公式即可求出面积的大小,设置的题目不仅加强了学生对于新知的应用意识,还体现了我本节课堂的完整性,解决了导入中留下的疑问。
考虑到本节课的学习中,因为学生已有经验较丰富,因此在探究过程会相对较为轻松,并且用时也会稍短,所以在课堂练习环节,我会再设置一个题目,给出一个三角形的面积及高的数值。
通过这样题目的设置是对三角形面积公式的反向应用,可以在巩固本节课学习的同时,也提高学生的逆向思考能力。并且给出两个练习题目也可以丰富课堂的教学内容。
(四)小结作业。
最后环节,我会提问学生本节课的收获,重点让学生回顾三角形的面积计算公式及探究方法。
对于课后作业,我设置了较为开放的形式,让学生找一找生活中的三角形物体,动手测量出其底和高,利用今天学习的面积计算公式,求出所找物体的面积。
这样的问题避开了单纯计算的形式,加入学生自己寻找计算自己喜欢的物体,不仅让学生感受数学知识在生活中广泛用途,还可以激发学生学习数学的积极性。
小学数学求三角形面积教案篇十二
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
苏教版标准实验教科书《数学》五年级上册p15~p16的内容,三角形的面积。
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
一、创设情境、导入新课。
1、提出问题。
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。
二、操作“转化”,推导公式。
1、寻找思路。
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]。
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
5、理解公式。
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本p85页的数学常识。)。
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]。
三、应用公式,解决问题。
师:那就请大家动手量一量它的底和高吧。
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]。
四、联系生活,适当拓展。
[应变预设:指导运用公式进行正确的计算,,然后集体订正。]。
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1。5厘米;图3:底2。5厘米,高2。8厘米)看谁算得又对又快!
四、全课总结,反思体验。
教师:这节课你们学习了什么?有哪些收获?
小学数学求三角形面积教案篇十三
教学内容:人教版第九册第三单元的《三角形面积的计算》。
教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学难点:理解三角形面积计算公式的推导过程。
教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程:
小学数学求三角形面积教案篇十四
2、相似三角形判定定理1两角对应相等,两三角形相似(asa)。
3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
4、判定定理2两边对应成比例且夹角相等,两三角形相似(sas)。
5、判定定理3三边对应成比例,两三角形相似(sss)。
7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
8、性质定理2相似三角形周长的比等于相似比。
9、性质定理3相似三角形面积的比等于相似比的平方。
10、边角边公理有两边和它们的夹角对应相等的两个三角形全等。
11、角边角公理有两角和它们的夹边对应相等的两个三角形全等。
12、推论有两角和其中一角的对边对应相等的两个三角形全等。
13、边边边公理有三边对应相等的两个三角形全等。
14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。
15、全等三角形的对应边、对应角相等。
等腰、直角三角形。
1、等腰三角形的性质定理等腰三角形的两个底角相等。
2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边。
3、等腰三角形的顶角平分线、底边上的中线和高互相重合。
4、推论3等边三角形的各角都相等,并且每一个角都等于60°。
5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
6、推论1三个角都相等的三角形是等边三角形。
7、推论2有一个角等于60°的等腰三角形是等边三角形。
8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
9、直角三角形斜边上的中线等于斜边上的一半。
1注重打好数学基础。
对于学生来说,想要学好数学,那么一定从小打好基础,因为数学是一个非常注重基础,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打基础,把自己欠缺的基础都补上,才能更好的进行后续的学习。
2整理笔记。
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是…)另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网)。
3改进方法,注重学法。
在数学学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题;上课记笔记,复习时喜欢看课本和笔记,比较注重条理化和规范化,因此,教师可以指导女生“开门造车”,主动在小组讨论中发言,让她们暴露学习中的问题,以便于有针对地指导,强化双基训练。对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,组织她们学习其他同学成功的经验,参加和高年级同学的帮扶结对活动,改进学习方法,逐步提高能力。另外,平时家长应该给女生多创设一些活动空间,而不仅仅是埋头书本,让她们多一点生活的积累,这对她们解决与生活有关的应用题、提高学习的趣味性有很大的帮助。
4多看辅导书。
做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。
3、列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式。