圆的面积教学反思总结 圆的面积教学反思(大全13篇)
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。优秀的总结都具备一些什么特点呢?又该怎么写呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。
圆的面积教学反思总结篇一
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生用学过的方法来实现转化和推导。在教学本课时,我注意了这样几点:
1、密切联系学生的生活实际。剪纸是学生所熟悉的,借助这一操作,让学生初步地感知到圆和直线型图形之间的转化,所以在后面估计圆的面积大小时,学生就很自然地想到了两种估计的方法。其次,借助教材中生活场景,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生解决问题的积极性,使全体学生积极参与到数学学习活动中。
2、引导学生观察发现新旧知识的联系,理解发现“化曲为直”。当学生第一次面对求圆这种曲线图形的面积时,老师不是提供现成的转化方法,而是让学生去思考,为什么数圆的面积比数正方形的面积要难,究竟难在什么地方?有什么办法可以解决?这些问题需要学生主动去回顾圆的特征、主动探究学习方法。
3、充分发挥多媒体课件、及圆面积演示器的作用。在教学中,教师通过计算机演示很好地诠释了化曲为直中“无限接近“的'极限思想;在推导圆的面积公式时,充分运用圆面积演示器,先展示四种转化的情况,然后分小组进行观察,比较转化前后图形间的联系,最后发现无论转化后的图形是长方形还是平行四边形,无论是否很接近长方形或平行四边形,最后推导出来的面积计算公式是一样的,也有力地说明圆的面积计算公式的正确性。
几何图形课的教学,就是要充分利用已有知识,学会迁移。要充分发挥直观教学的作用,帮助学生由感性向理性、由具体向抽象转化的思维过程。更要发挥现代化教学手段,使学生能在较短的时间内接触较多的信息,完成知识的建构。
圆的面积教学反思总结篇二
这节《圆的面积》,是义务教育课程标准实验教科书六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识的学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
圆的面积是在圆的周长的基础上进行教学的.,首先利用课件演示马能吃到草的图让学生直观感知圆的面积。并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
明确了概念,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。()根据学生的回答,选取其中的一个平面图形:平行四边形,让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生拼并观察它像什么图形?让学生发表自己的意见,充分肯定学生的观察。引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就愈接近长方形,完成另一个重要数学思想—极限思想的渗透。
圆的面积教学反思总结篇三
《圆的面积》这一节课是很重要的一节课。它不仅要向学生渗透曲线图形与直线图形的关系,运用化曲为直的数学思想导出圆的`面积的计算公式,而且为以后的圆柱、圆锥等知识的学习打下了基础。本节课,我认为我有2个亮点:
在课的开始,我出示了一个教学情景:一只羊被一条5米的绳子拴在草地上的木桩上,它能吃到多少平方米的草呢?学生们经过了一番思索一致认为以5米为半径,以木桩为圆心,画一个圆,圆上的草就是羊所能吃到的草,随着学生的指引,我在黑板上板画,聪明的学生马上就意识到了“求出了圆的面积,就是羊能吃到多少平方米的草。”我指着黑板上草坪上的圆,让学生理解:“什么是圆的面积?”从而引导出:圆的面积就是它所占平面的大小。
在活动操作之前,我先领学生回顾,平行四边形公式的推导方法。然后铺垫猜想:圆可以转化成我们学过的什么图形来计算呢?接下来,学生们带着猜想,运用书中附页上提供的学具自主探究。一堂课,时间毕竟有限,要在有限的时间内完成这项活动。我事先做了充分地考虑:四人一组,细化了每个小组人员的分工:一人剪16等分的圆,另一个人整理剪好的部分;一人剪32等份的圆,另一个随后整理,全剪完,四人集智慧,分别拼,看都能拼出什么图形来。这样分工既节省时间,又能提高课堂效率,还充分地发挥了团队小组合作的力量。
学生拼完图形,由于学具纸很薄,等份的份数不够,学生在剪裁时存在着一定的误差,剪得不均匀,致使拼完的图形十分不规范,于是,我灵机一动,让学生用格尺,用笔沿着拼好的图形拓一下,这样就缓解了图形不规范所造成公式推导的障碍。学生探究后,再用教具演示公式推导的过程,让学生加深理解这一过程。就这样,我们巧妙衔接,推导了公式。顺利而高效地完成了探究活动。
圆的面积教学反思总结篇四
《圆的面积(二)》是在学生掌握了圆的面积计算公式的基础上进行教学的。主要是让学生利用圆的面积公式,解决生活中的一些实际问题,体会转化的数学思想。在本课的开始,我请学生回忆圆面积公式的推导过程。已知周长,求圆的直径、半径。在此基础上,让学生独立解决已知半径,求面积,已知直径,求面积,已知周长,求面积三个问题,学生在这种情况下,学习圆的面积计算,有利于知识的迁移。
在教学过程中,我从根据圆的半径,直径,求圆的面积,到根据圆的周长计算圆的面积,体验其中的不同,先让学生已知半径,求面积,已知直径,求面积,再到已知周长求面积,这样设计降低了教学难度,使学生明白要求圆的面积必须知道圆的半径,从而突破了教学难点。
在学生掌握了圆的面积计算方法以后,我让学生猜测,圆还可以转化成我们以前学过的什么图形,圆的面积与什么有关,让学生进行估测,当学生猜测出圆还可以转化成我们以前学过的三角形,圆的面积,可能与圆的半径有关系时,设计实验验证。沿半径把圆形杯垫剪开,并把纸条从长到短排列起来,观察并探索圆的面积公式,出示和圆有关的组合图形,让学生通过仔细观察与分析,结合前面学过的平面图形的面积知识,求出老师出示的组合图形的面积。学生的好奇心,求知欲被充分调动起来,而这些为他们随后进一步展开探索活动做好铺垫。
我在本节课中利用动画演示与动手操作相结合,加深学生对题目的理解,结合所学的知识,让学生学以致用,解决创设的情境问题等基础练习,提高练习,综合练习,拔高练习四个层次,从四个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的侧重点,较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐,学生亲身经历提出猜想,动手实验、验证,得出结论的过程,对知识进行再创造。
教学中存在不足和需要改进的地方:没有加强训练小学生的计算能力,在上课过程中发现学生的计算速度比较慢,学生还没有达到熟练的程度,特别是当半径等于一个小数,这时学生最容易犯错。在以后练习中,重点训练小数的平方,达到正确解决问题的目的。
圆的面积教学反思总结篇五
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。
在教学本课时,我努力做到了以下几点:
1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。
2、重视培养学生“数学化”的口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。
3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。
不足之处:
1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。
圆的面积教学反思总结篇六
数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。
在讲授《圆的面积》一课时,由于学生熟悉了研究平面图形的思路:认识特征——周长——面积,所以范老师采用了复习旧知、直奔主题的引入方式,既有利于学生形成研究问题的思路,把新知识纳入已有的认知结构,又简洁明快,结构紧凑,为学生后面的探究提供了时间上的保证。
圆与学生以前探究的长方形、正方形、平行四边形、三角形、梯形等都有所不同,因为它是平面上的曲线图形,因此当范老师提出“怎么求圆的面积呢”,学生并不能马上找到解决的方法。有的学生一开始无从下手,这时,把时间给学生,把探究的空间给学生,充分相信学生能行,引导学生从头脑里检索已有的知识和方法,让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
范老师能够深入了解学生探究圆面积的心理,知道有的学生脑子里不是一片空白的,尊重学生的原创思维。
通过探究,通过剪拼把圆转化成近似的平行四边形。引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。
当动手操作已经无法再完成时,范老师用课件动态演示,弥补操作与想象的不足,帮助学生进一步感知平均分的份数越多,剪拼成的图形越来越像平行四边形。围绕着“怎样更像”进行了一次又一次的追问,让学生充分地体验了“极限思想”。
本课重点是引导学生去经历探究圆的面积公式的过程,范老师充分体验“转化”和“极限思想”,所以安排比较少,虽然这节课只设计了几个基本练习来检验学生对圆的面积的理解和掌握程度,但这并不妨碍这节课的精彩。
圆的面积教学反思总结篇七
《圆的面积》这节课学生学习求曲线图形面积,也是求图形面积的一次重要转折。探究圆的面积计算公式,需要学生运用已有的学问阅历来实现“知到”的转化,最终推导出圆的面积计算公式。
在教学本课时,我重视学生活动阅历的积存。先引导学生回忆平行四边形的面积计算公式的推导过程,以实现学生对“知转化为”这一数学学习方法的`迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经受“转化”的过程,进一步促进了学生对这一方法阅历的内化。重视培育学生“数学化”的口头表达力气。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的觉察,让学生深刻感受到化曲为直中“无限接近”的极限思想。在觉察拼成的平行四边形的与圆的联系后,引导学生用“由于……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培育了学生思维的严密性和语言表述的准确性。
在教学过程中,我充分发挥多媒体课件的作用。在教学中,我通过课件演示,直观形象地再现了拼成的平行四边形与圆各局部之间的联系〔底相当于圆周长的一半,高相当于圆的半径〕,轻松化解了教学难点,让学生教简洁地推导出了圆的计算公式。
教学中的缺乏之处:
1、在引导学生“把圆转化成已学过的图形”进展面积争论时,缺乏有效的启发和缺乏必要的指导,如圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、我在引导学生觉察“拼成的图形和圆的联系”时,收的多,放的少,抑制了学生思维的主动性、独立性和制造性。
圆的面积教学反思总结篇八
《圆的面积》中的圆是小学阶段最终认识的一个平面图形,它对学生来说是一种新的认知。是在学生掌握了面积的含义及平行四边形、长方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上来进行教学的。在教学中,我引导学生回忆了平行四边形求面积公式时的推导方法,采用小组合作探究的学习方式,让他们亲身经历了圆的面积公式的推导过程,从而有了更深刻的了解,发展了学生自主探究的本事。
课刚开始,我与学生们一齐复习了前面学习的圆的周长公式,为下头计算圆的面积公式做好了铺垫。先让学生各自述说自我对于圆的面积的一些认识,再提出一个难题:你能想办法求出圆的面积么?应对这一问题,大部分学生一筹莫展。个别同学经过预习,对本课所采用的方法有了必须的了解,表达了利用剪一剪和拼一拼的方法进行研究的想法。在这时,提出以前有没有这样剪一剪拼一拼的方法?学生回忆起以前学平行四边形面积时也是沿平行四边形的高剪下一三角形,再经过平移补到缺口的方法将平行四边形转化为长方形。从中得出了转化是一种很巧妙的方法,能够在动手操作的过程中用到。然后同学们小组合作,动手操作,孩子们经过操作后,发现将圆等份后能够将圆转化成一个近似的平行四边形。如果将圆等分的等份越多,那转化的图形就越接近的平行四边形。能够根据长方形或平行四边形的面积计算公式推导出圆的面积计算公式。根据学生的回答,利用课件的演示,直观的向他们展示了转化过程以及利用极限的方法变成。
长方形后其长、宽与圆的周长、半径之间的关系。最终在学生们大胆猜测,积极求证之下推导出了圆的面积计算公式。经过了一些例题的练习和巩固,学生们基本掌握了如何利用面积公式计算圆的面积。
为了本节课的教学,自我经过了较长时间的精心准备,所以,从整个教学设计来看还做得较为可行,重点把握的比较准确。可是在具体实施教学时还是存在着几点不足:
1、课堂语言评价存在着较大的不足。平时比较不怎样注意这方面的培养,导致课堂气氛没有很好的被调动起来。所以,期望能经过平时课堂教学的磨练逐步改善这个缺点。
2、圆的面积公式推导及实践操作花费了较多的时间,所以在讲解推导过程中讲的不够透彻,学生理解还可是深入。如果当时在引导上能及时研究到这一点,并给予更具技巧性的引导,或与能使学生理解的更加透彻,那么整个课堂讲显得更为饱满。
这学期的磨课活动虽然结束了,但它留给我的思考还是很多的,期望能在今后的教学中取长补短,积累经验,取得更大的提高。
圆的面积教学反思总结篇九
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力, 把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:
发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的'馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。
在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题 解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。
在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如??”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”??学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心.
我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。
圆的面积教学反思总结篇十
圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。通过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也可以拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形可以让学生自己下课后推导。
再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。
圆的面积教学反思总结篇十一
圆是小学阶段学习的最终一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
经过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,并且从空间观念来说,进入了一个新的领域。所以,经过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
经过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积学生有点不知所措。此刻回想起来,我不应当一上来就问如何计算圆的面积,而应当先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自我手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最终得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索本事、分析问题和解决问题的本事得到了提高。但值得反思的是,我总是抱着一节课应当解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应当异常注意的地方。
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用。在每一道练习题的设置上,都有不一样的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是经过自我的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应当给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索本事、分析问题和解决同题的本事得到充分提高。另外,在细节的设计还要精心安排。
圆的面积教学反思总结篇十二
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
学生通过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。
通过学生的操作,教师再运用flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。通过计算机的声、光、色、形,综合表现能力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。
圆的面积教学反思总结篇十三
圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。透过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。
在凸现圆的面积的好处以后,透过比较复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也能够拼成三角形和梯形。学生动手剪拼好后,选取其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越接近了平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形能够让学生自我下课后推导。
再比较圆形和这个拼成的图形之间的关系。透过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
透过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。透过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用潜力。在每一道练习题的设置上,都有不一样的目的性,教师注重了每个练习的指导侧重点。
本节课运用了多媒体课件演示辅助教学手段。多媒体教学最大的特点是有助于突出教学重点,分散教学难点。计算机具有声、光、色、形,综合表现潜力强,透过图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的用心性、主动性、创造性。
学生是活泼好动,追逐事物的新奇,自控潜力差。他们的注意力往往取决于外界环境的刺激,带有明显的情绪色彩。只要一点击鼠标,超多的演示透过颜色的比较,图象的闪烁,声音的变化,引起学生有意注意,不仅仅准确展现了变换的过程,更为学生的思考和探究作出了提示。这样,教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学的有效性。
课还让学生亲自动手体验剪拼转化的过程,既培养了学生转化的数学学习方法,又培养了学生的动手潜力,想象潜力和创造潜力。亲身体会学习数学的乐趣。