高三数学说课稿(通用15篇)
总结是我们更好地了解自己,发现问题,解决问题的方法之一。总结要有重点、有深度,我们可以选择重要的事情进行分析和总结。接下来,我们将展示一些优秀的总结范文,希望能给大家一些启发和灵感。
高三数学说课稿篇一
《随机抽样》是人教版职教新教材《数学(必修)》下册第六章第一节的内容,“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学‘的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础针对这样的情况,我做了如下的教学设想。
(一)教学目标:
(1)理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;(2)通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;(3)通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。
(二)教学重点、难点。
重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)。
难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性。
为了突出重点,突破难点,达到预期的教学目标,我再从教法、学法上谈谈我的教学思路及设想。
下面我再具体谈谈教学实施过程,分四步完成。
(一)设置情境,提出问题。
〈屏幕出示〉例1:请问下列调查宜“普查”还是“抽样”调查?
a、一锅水饺的味道b、旅客上飞机前的安全检查。
c、一批炮弹的杀伤半径d、一批彩电的质量情况。
e、美国总统的民意支持率。
学生讨论后,教师指出生活中处处有“抽样”,并板书课题——xxxx抽样「设计意图」生活中处处有“抽样”调查,明确学习“抽样”的必要性。
(二)主动探究,构建新知。
a、在班级12名班委名单中逐个抽查5位同学进行背诵。
b、在班级45名同学中逐一抽查10位同学进行背诵。
先让学生分析、选择b后,师生一起归纳其特征:(1)不放回逐一抽样,(2)抽样有代表性(个体被抽到可能性相等),学生体验b种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题——(简单随机)抽样及其定义。
从例2、例3中的正反两方面,让学生体验随机抽样的科学性。这是突破教学难点的重要环节之一。
复习基本概念,如“总体”、“个体”、“样本”、“样本容量”等。
〈屏幕出示〉例4我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。
先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤:
(1)编号制签。
(2)搅拌均匀。
(3)逐个不放回抽取n次。教师板书上面步骤。
请一位同学说说例3采用“抽签法”的实施步骤。
「设计意图」。
1、反馈练习落实知识点突出重点。
2、体会“抽签法”具有“简单、易行”的优点。
〈屏幕出示〉例5、第07374期特等奖号码为08+25+09+21+32+27+13,本期销售金额19872409元,中奖金额500万。
提问:特等奖号码如何确定呢?彩票中奖号码适合用抽签法确定吗?
让学生观看观看电视摇奖过程,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:
(1)编号。
(2)在随机数表上确定起始位置。
(3)取数。教师板书上面步骤。
请一位同学说说例3采用“随机数表法”的实施步骤。
高三数学说课稿篇二
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法。
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观。
1、感受动点轨迹的动态美、和谐美、对称美。
教学重点:运用类比、联想的方法探究不同条件下的轨迹。
教学难点:图形、文字、符号三种语言之间的过渡。
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。
1、创设情景,引入课题。
生活中我们四处可见轨迹曲线的影子。
【演示】这是美丽的城市夜景图。
【演示】许多人认为天体运行的轨迹都是圆锥曲线,
研究表明,天体数目越多,轨迹种类也越多。
【演示】建筑中也有许多美丽的轨迹曲线。
设计意图:让学生感受数学就在我们身边,感受轨迹。
曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索。
例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。
第一步:让学生借助画板动手验证轨迹。
第二步:要求学生求出轨迹方程。
法一:设,则。
由得,
化简得。
法二:设,由得。
化简得。
法三:设,由点到定点的距离等于定长,
根据圆的定义得;。
第三步:复习求轨迹方程的一般步骤。
(1)建立适当的坐标系。
(2)设动点的坐标m(x,y)。
(3)列出动点相关的约束条件p(m)。
(4)将其坐标化并化简,f(x,y)=0。
(5)证明。
其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化。
设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。
3、主动发现、主动发展。
由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究m不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)。
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。
第二步:分解动作,向学生提出3个问题:
问题1:当m位置不同时,线段bm与ma的大小关系如何?
问题2、体现bm与ma大小关系还有什么常见的形式?
问题3、你能类比例1把这种数量关系表达出来吗?
第三步:展示学生归纳、概括出来的数学问题。
1、线段ab的长为2a,两个端点b和a分别在x轴和y轴上滑动,点m为ab上的点,满足,求点m的轨迹方程。
2、线段ab的长为2a,两个端点b和a分别在x轴和y轴上滑动,点m为ab上的点,满足,求点m的轨迹方程。
3、线段ab的长为2a,两个端点b和a分别在x轴和y轴上滑动,点m为ab上的点,满足,求点m的轨迹方程。(说明是什么轨迹)。
第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成。
4、合作探究、实现创新。
改变a、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定a点,运动b点)。
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展。
1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。
2、已知a(4,0),点b是圆上一动点,ab中垂线与直线ob相交于点p,求点p的轨迹方程。
3、已知a(2,0),点b是圆上一动点,ab中垂线与直线ob相交于点p,求点p的轨迹方程。
4若把上述问题中垂线改为一般的垂线与直线ob相交于点p,请同学们利用画板验证点p的轨迹。
以下是学生课后探究得到的一些轨迹图形。
课后有学生问,如果x轴和y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?
可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。
以下是x轴和y轴不垂直时的轨迹图形。
(一)、教材。
《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。
(二)、校情、学情。
校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。
学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。
(三)学法。
观察、实验、交流、合作、类比、联想、归纳、总结。
(四)、教学过程。
1、创设情景,引入课题。
2、激发情感,引导探索。
由梯子滑落问题抽象、概括出数学问题。
第一步:让学生借助画板动手验证轨迹。
第二步:要求学生求出轨迹方程。
第三步:复习求轨迹方程的一般步骤。
3、主动发现、主动发展。
探究m不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹。
第二步:分解动作,向学生提出3个问题:
第三步:展示学生归纳、概括出来的数学问题。
4、合作探究、实现创新。
改变a、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定a点,运动b点)。
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展。
(五)、教学特色:
借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。
本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。
高三数学说课稿篇三
本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所a版教材)选修2-2中第§1.1.3节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.
【知识与技能目标】。
(1)知道曲线的切线定义,理解导数的几何意义;。
——让学生感知和初步理解函数在处的导数的几何意义就是函数的图像在处的切线的斜率,即=切线的斜率.
(2)导数几何意义简单的应用.
——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.
【过程与方法目标】。
(1)回顾圆锥曲线的切线的概念,复习导数概念,寻找在处的瞬时变化率的几何意义;。
(3)通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;。
(5)通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.
【情感态度价值观目标】。
(3)增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.
重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.
难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.
关键:由割线趋向切线动态变化效果,由割线“逼近”成切线的理解.
教学环节。
教学内容。
师生互动。
设计意图。
高三数学说课稿篇四
(一)地位与作用:
《应用举例》通过运用正弦定理、余弦定理解决某些与测量、工业和几何计算有关的实际问题,使学生进一步体会数学在实际中的应用,激发学生学习数学的兴趣,培养学生由实际问题抽象出数学问题并加以解决的能力。从某种意义上讲,这一部分可以视为用代数法解决几何问题的典型内容之一。它是对前面学习的正余弦定理以及三角函数知识的应用推广,有机的将数学理论知识与实际生活联系起来,再次提高学生的数学建模能力。
(二)学情分析:
高中学生的学习以掌握系统的、理性的间接经验为主。然而,间接经验并非学生亲自实践得来的,有可能理解得不深刻。因此,还应适当地参加课外活动,亲自获得一些直接的经验,以加深对间接知识的理解,培养自己综合运用知识,主动探索新知识和创造性地解决问题的能力。高中二年级的学生学习主动性增强,观察力,思维的方向性、目的性更明确,而且他们的独立分析和解决问题的能力也有很大的提高,依赖性减少,他们开始重视把书本知识和实践活动结合起来,形成知识、能力和个性的协调发展。
基于以上我制定如下的教学目标及教学重难点:
(三)教学目标:
1、知识与技能。
初步运用正弦定理、余弦定理解决某些与测量、工业和几何计算有关的实际问题。
2、过程与方法。
通过解决“测量一个底部不能到达的建筑物的高度”或“测量平面上两个不能到达的地方之间的距离”的问题,初步掌握将实际问题转化为解斜三角形问题的方法,进一步提高用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力。
3、情感、态度与价值观。
通过解决“测量”问题,体会如何将具体的实际问题转化为抽象的数学问题,逐步养成实事求是,扎实严谨的科学态度,学会用数学的思维方式去解决问题,认识世界。
(四)重点难点:
根据知识与技能目标以及学生的逻辑思维能力和知识水平确定以下的教学重难点。
教学重点:如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决。
教学难点:分析、探究并确定将实际问题转化为数学问题的思路。
为突出重点,突破难点,让学生准确分析题意,加深对实际情况的理解,我把幻灯片与实物投影有机地结合起来,并让学生亲自动手参与具体测量工作,激发学生的学习热情,实现由具体的.实际问题向抽象的数学问题转化。重点体现以学生为主体,教师为主导的教学理念。
(五)教具:
多媒体、实物投影、自制测角仪、米尺。
根据化理论、系统论,以教师为主导,学生为主体的原则,结合高二学生的认知特点,喜欢探究事物的本质,创设良好的教学活动环境,控制活动进程,鼓励学生大胆质疑,引发争论,并让学生自由发表各研究小组的见解。同时尊重学生的主体地位,给学生充分的动手时间,进行思考探索,合作交流,以达到对知识的发现和接受,使书本知识成为学生自己的知识,从而达到教学的效果。
基于上述教法学法分析,我把教学分为课前和课上两块:
第一块:课前教具准备及材料收集。
1、课前简要讲述测角仪原理,学生自己动手制作简易测角仪。
2、课前组织学生去测量沈阳彩电塔的指定相关数据,收集材料。激发学生对家乡的热爱。
3、提出课前思考题:怎样用米尺和测角仪,测算电视塔的高度?
这部分课前准备可以使同学们在活动中感受体验,获得感性的认识,为新课教学奠定基础。
第二块:课上教学研究。
第一部分:复习回顾。
(1)正弦定理、余弦定理。
(2)正弦定理、余弦定理能解决哪些类型的三角形问题?
在此复习旧知为新课做好理论支持,也为数学建模提供思路。
第二部分:设置情境,引出问题。
在课前材料准备,和知识储备基础上,创设全方位立体情景,例如热点问题冰岛火山灰对世界各地侵扰时间的预测(也就是通过冰岛与各地距离的测算及火山灰扩散速度推算时间问题);课外活动中的彩电塔高度的测算问题,以及地球与月球之间的距离问题引入我们的新课:利用正弦定理、余弦定理研究如何测量距离——《应用举例》。(板书课题)在此充分调动学生的好奇心,激发学生的探索精神,进入问题研究阶段。
第三部分:新课研究。(分四步)。
第一步:合作交流,探求新知。
学生在初中研究过底部能到达的建筑物高度的测量方法,提示学生用类比的思想再次研究底部不能到达的建筑物高度又怎么测算——以彩电塔为例,对测量的数据进行分析,处理。
教师可以让学生拿出各小组测得的数据讨论,并派代表发表见解,实物投影展示其完成情况。学生通过研究可能得到如下方法:xxxx(投影展示多种方法)。要注意给学生足够多的时间,空间发挥自己的聪明才智,分析解决问题,充分展示自我,享受学习的乐趣。再次体现学生为主体的教学理念。
第二步:分析解题方法,突出重点,突破难点。
在学生充分发表各自的见解后,出示一组学生的数据,具体运用正余弦定理解题,并归纳总结解题的方法。
解题步骤:
(1)分析:理解题意,分清已知与未知,画出示意图。
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解。
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。
通过以上步骤,使学生学会收集材料,整理材料及分析材料的方法,学会用数学思维方式去解决问题、认识世界。
如果学生讨论的情况不是很好,可视情况逐步引导学生分析题意,研究一个具体问题需要(至少)设置几个测量点,哪些边角可测,哪些边角不可测,构造一个三角形能否解决问题?如何运用具有公共边的三角形进行已知(或已求)边角与待求边角之间的转化。随着问题一个个的提出解决,知识结构逐渐在学生的头脑中完善,具体。使学生轻松自然接受,从而突破本节的重难点。
第三步:学为所用,继续探索。
进一步探究第二个问题:怎样测量地面上两个不能到达的地方之间的距离。以测量两海岛间距离为例。鼓励学生创新,构建适当的三角形再次将实际问题转化为数学问题,从而解决实际测量不便问题,深化本节课的精髓——数学建模。
第四步:加强练习,提高能力。
(1)练习题1、2的配置,可加强学生对实际问题抽象为数学问题过程的理解和应用。在演算过程中,要求学生算法简练,算式工整,计算准确。为解答题的规范解答打下坚实的基础。
(2)练习题3呼应开头,通过台风侵袭问题联系实际问题冰岛火山灰侵扰时间预测,使学生懂得解斜三角形的知识在实际生活中有着广泛的应用。
(3)让学生以小组为单位编题,互相解答,将课堂教学推向高潮。再次加强学生对数学建模实质的理解。
第四部分:小节归纳,拓展深化。
总结:
(1)通过本节课的学习,你学会了什么方法?
(2)能解决哪些实际问题?
通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础。
第五部分:布置作业提高升华。
我将作业分为必做题和选做题两部分,必做题面向全体,注重知识反馈,选做题更注重知识的延伸和连贯性,让有能力的学生去探求。(幻灯打出必做和选做题)。
高三数学说课稿篇五
一、教材分析:
(一)地位与作用:
《应用举例》通过运用正弦定理、余弦定理解决某些与测量、工业和几何计算有关的实际问题,使学生进一步体会数学在实际中的应用,激发学生学习数学的兴趣,培养学生由实际问题抽象出数学问题并加以解决的能力。从某种意义上讲,这一部分可以视为用代数法解决几何问题的典型内容之一。它是对前面学习的正余弦定理以及三角函数知识的应用推广,有机的将数学理论知识与实际生活联系起来,再次提高学生的数学建模能力。
(二)学情分析:
高中学生的学习以掌握系统的、理性的间接经验为主。然而,间接经验并非学生亲自实践得来的,有可能理解得不深刻。因此,还应适当地参加课外活动,亲自获得一些直接的经验,以加深对间接知识的理解,培养自己综合运用知识,主动探索新知识和创造性地解决问题的能力。高中二年级的学生学习主动性增强,观察力,思维的方向性、目的性更明确,而且他们的独立分析和解决问题的能力也有很大的提高,依赖性减少,他们开始重视把书本知识和实践活动结合起来,形成知识、能力和个性的协调发展。
基于以上我制定如下的教学目标及教学重难点:
(三)教学目标:
1、知识与技能。
初步运用正弦定理、余弦定理解决某些与测量、工业和几何计算有关的实际问题。
2、过程与方法。
通过解决“测量一个底部不能到达的建筑物的高度”或“测量平面上两个不能到达的地方之间的距离”的问题,初步掌握将实际问题转化为解斜三角形问题的方法,进一步提高用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力。
3、情感、态度与价值观。
通过解决“测量”问题,体会如何将具体的实际问题转化为抽象的数学问题,逐步养成实事求是,扎实严谨的科学态度,学会用数学的思维方式去解决问题,认识世界。
(四)重点难点:
根据知识与技能目标以及学生的逻辑思维能力和知识水平确定以下的教学重难点。
教学重点:如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决。
教学难点:分析、探究并确定将实际问题转化为数学问题的思路。
为突出重点,突破难点,让学生准确分析题意,加深对实际情况的理解,我把幻灯片与实物投影有机地结合起来,并让学生亲自动手参与具体测量工作,激发学生的学习热情,实现由具体的实际问题向抽象的数学问题转化。重点体现以学生为主体,教师为主导的教学理念。
(五)教具:
多媒体、实物投影、自制测角仪、米尺。
二、教法学法。
根据化理论、系统论,以教师为主导,学生为主体的原则,结合高二学生的认知特点,喜欢探究事物的本质,创设良好的教学活动环境,控制活动进程,鼓励学生大胆质疑,引发争论,并让学生自由发表各研究小组的见解。同时尊重学生的主体地位,给学生充分的动手时间,进行思考探索,合作交流,以达到对知识的发现和接受,使书本知识成为学生自己的知识,从而达到教学的效果。
三、
基于上述教法学法分析,我把教学分为课前和课上两块:
第一块:课前教具准备及材料收集。
1、课前简要讲述测角仪原理,学生自己动手制作简易测角仪。
2、课前组织学生去测量沈阳彩电塔的指定相关数据,收集材料。激发学生对家乡的热爱。
3、提出课前思考题:怎样用米尺和测角仪,测算电视塔的高度?
这部分课前准备可以使同学们在活动中感受体验,获得感性的认识,为新课教学奠定基础。
第二块:课上教学研究。
第一部分:复习回顾。
(1)正弦定理、余弦定理。
(2)正弦定理、余弦定理能解决哪些类型的三角形问题?
在此复习旧知为新课做好理论支持,也为数学建模提供思路。
第二部分:设置情境,引出问题。
在课前材料准备,和知识储备基础上,创设全方位立体情景,例如热点问题冰岛火山灰对世界各地侵扰时间的预测(也就是通过冰岛与各地距离的测算及火山灰扩散速度推算时间问题);课外活动中的彩电塔高度的测算问题,以及地球与月球之间的距离问题引入我们的新课:利用正弦定理、余弦定理研究如何测量距离——《应用举例》。(板书课题)在此充分调动学生的好奇心,激发学生的探索精神,进入问题研究阶段。
第三部分:新课研究。(分四步)。
第一步:合作交流,探求新知。
学生在初中研究过底部能到达的建筑物高度的测量方法,提示学生用类比的思想再次研究底部不能到达的建筑物高度又怎么测算——以彩电塔为例,对测量的数据进行分析,处理。
教师可以让学生拿出各小组测得的数据讨论,并派代表发表见解,实物投影展示其完成情况。学生通过研究可能得到如下方法:xxxx(投影展示多种方法)。要注意给学生足够多的时间,空间发挥自己的聪明才智,分析解决问题,充分展示自我,享受学习的乐趣。再次体现学生为主体的教学理念。
第二步:分析解题方法,突出重点,突破难点。
在学生充分发表各自的见解后,出示一组学生的数据,具体运用正余弦定理解题,并归纳总结解题的方法。
解题步骤:
(1)分析:理解题意,分清已知与未知,画出示意图。
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解。
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。
通过以上步骤,使学生学会收集材料,整理材料及分析材料的方法,学会用数学思维方式去解决问题、认识世界。
如果学生讨论的情况不是很好,可视情况逐步引导学生分析题意,研究一个具体问题需要(至少)设置几个测量点,哪些边角可测,哪些边角不可测,构造一个三角形能否解决问题?如何运用具有公共边的三角形进行已知(或已求)边角与待求边角之间的转化。随着问题一个个的提出解决,知识结构逐渐在学生的头脑中完善,具体。使学生轻松自然接受,从而突破本节的重难点。
第三步:学为所用,继续探索。
进一步探究第二个问题:怎样测量地面上两个不能到达的地方之间的距离。以测量两海岛间距离为例。鼓励学生创新,构建适当的三角形再次将实际问题转化为数学问题,从而解决实际测量不便问题,深化本节课的精髓——数学建模。
第四步:加强练习,提高能力。
(1)练习题1、2的配置,可加强学生对实际问题抽象为数学问题过程的理解和应用。在演算过程中,要求学生算法简练,算式工整,计算准确。为解答题的规范解答打下坚实的基础。
(2)练习题3呼应开头,通过台风侵袭问题联系实际问题冰岛火山灰侵扰时间预测,使学生懂得解斜三角形的知识在实际生活中有着广泛的应用。
(3)让学生以小组为单位编题,互相解答,将课堂教学推向高潮。再次加强学生对数学建模实质的理解。
第四部分:小节归纳,拓展深化。
总结:
(1)通过本节课的学习,你学会了什么方法?
(2)能解决哪些实际问题?
通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础。
第五部分:布置作业提高升华。
我将作业分为必做题和选做题两部分,必做题面向全体,注重知识反馈,选做题更注重知识的延伸和连贯性,让有能力的学生去探求。(幻灯打出必做和选做题)。
四、板书设计。
高三数学说课稿篇六
作为一位杰出的老师,就不得不需要编写说课稿,说课稿有助于提高教师的语言表达能力。怎样写说课稿才更能起到其作用呢?下面是小编精心整理的《函数单调性》高三数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。总课时安排为3课时,《函数的单调性》是本节中的第一课时。
函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
按现行教材结构体系,该内容安排在学习了函数的现代定义及函数的三种表示方法之后,了解了在生活实践中函数关系的普遍性,另外学生已在初中学过一次函数、反比例函数、二次函数等初等函数。
在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。
利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。
学生刚刚接触这种证明方法,给出一定的步骤是必要的',有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。
教学目标的制定与实现,主要取决于我们对学习者掌握的程度。只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。
不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。
我所教授的班级的学生具体学情。
具体到我们班级学生而言有以下特点:学生多才多艺,个性张扬,但学科成绩不很理想,参差不齐;经受不住挫折,需要经常受到鼓励和安慰,否则就不能坚持不懈的学习;学习习惯不好,小动作较多,学习时注意力抗干扰能力不强,易被外界因素所影响,需要不断的引导;独立解决问题能力弱,畏难情绪严重,探索精神不足。只有少部分学生学习习惯良好,学风严谨,思维缜密。
根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
(一)三维目标。
1、知识与技能:
(1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。
(2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;
2、过程与方法:
(1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。
(2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。
3、情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。
高三数学说课稿篇七
一、教材分析:
二、教学目标。
【知识与技能目标】。
(1)知道曲线的切线定义,理解导数的几何意义;
(2)导数几何意义简单的应用.。
【过程与方法目标】。
(1)回顾圆锥曲线的切线的概念,复习导数概念,寻找在处的瞬时变化率的几何意义;
(3)通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;
《导数的几何意义高三数学说课稿》这篇教育教学文章来自[淘教案网]收集与整理,感谢原作者。
【情感态度价值观目标】。
(3)增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.。
三、重点、难点。
重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.。
关键:由割线趋向切线动态变化效果,由割线“逼近”成切线的理解.。
教学环节。
教学内容。
师生互动。
设计意图。
温故知新。
诱发思考。
1.初中平面几何中圆的切线的定义;
2.公共点的个数是否适应一般曲线的切线的定义的讨论;
3.用幻灯片演示圆的切线和一般曲线的切线情形.。
回顾:初中平面几何中圆的切线的定义是什么?
思考:这种定义是否适用于一般曲线的切线呢?
提问:你能否用你已经学过的函数曲线的切线举出反例?
强调:圆是一种特殊的曲线,这种定义并不适用于一般曲线的切线.。
教师提出三个层次的问题,由学生思考后回答,诱发学生对圆的切线定义的局限的反思;
借助幻灯片演示感知曲线切线定义的各种情形,为寻找切线的逼近定义提供“亲身”经历.。
实验观察。
思维辨析。
演示过程:
板书:1.曲线的切线的定义。
当时,割线(确定位置),pt叫做曲线在点p处的切线.。
2.导数的几何意义。
函数f(x)在x=x0处的导数是切线pt的斜率k.即。
.
1.交流讨论观察结果;
2.思考割线的斜率与切线的斜率有什么关系;
3.参与分析和推导函数f(x)在x=x0处的导数的几何意义.。
1.让学生参与曲线的切的逼近发现过程,初步体会曲线的切线的逼近定义;
2.初步感知数学定义的严谨性和几何意义的直观性;
3.让学生利用已学的导数的定义,推出导数的几何意义,让学生分享发现的快乐.。
观察发现思维升华。
板书:3.数学思想方法:“以直代曲”思想方法.即。
曲线上某点的切线近似代替这一点附近的曲线(通过几何画板演示).。
2.放大点p的附近,感受切线近似于曲线.。
2.体会“以直代曲”.。
学而习之小试牛刀。
例1:求抛物线在点处的切线方程.。
变式训练:过抛物线的点处的切。
线平行直线,求点的坐标.。
1.引导学生分析:切线在切点a处的斜率应该是什么?
2.由学生根据导数的定义式求函数在x=1处的导数,教师写出规范的板书;
3.提出变式训练.。
1.初步体会导数的几何意义;
2.回顾用导数的定义求某处的导数;
3.设切点,由求知数来表示导数;
4.规范解题格式。
高三数学说课稿篇八
1.理解加号、减号、等号的含义。
2.学习5以内的加法。
1.5以内加法题卡,加、减、等于符号,动物卡片图等。
2.教室的地上画一个圈。
1、介绍新朋友:教师出示+、-、=符号。“+”表示一个数与另一个数合起来。
教师示意:两个幼儿分别站在教师左右两边,“+”表示两个幼儿分别从教师的左右两边走到一起并拥抱。
“-”表示原来的总数中去掉一个数。
教师示意:原来拥抱在一起的两个幼儿,走开一个。
“=”表示它两边的数量相等。
教师示意:教师的左右手分别搀着两个幼儿。
2、学习加法:
教师在黑板上演示加法题:
——“河里有2只小鸭,游来了只小鸭,现在河里有几只小鸭?”
教师演示算式:
——“原来的2只小鸭用数字2表示;游来了一只小鸭用数字1表示;现在河里有几只小鸭?在数字2和数字1之间用+,表示这两个数字合起来是3。
2+1=3。”
“等号两边的数字有什么特点?”(两边的数量相等。)。
以此类推,学习5以内数的加法。
3、游戏:奇妙的口袋:
教师在教室的地上画一个圈。
幼儿参加游戏,看教师出示的符号,立即做出反应:
——“看到‘+’号你们赶快从外边站到圆圈里去;看带‘-’号你们要从圈里出来;看到‘=’号表示圈内圈外的人数一样多。”
高三数学说课稿篇九
这一环节是以学生分组活动为主的形式,教师在活动中要巡视、指导、了解信息,对学生的研究给以鼓励肯定。教师围绕梯形的性质提出有探索价值的问题,让学生合作研究、分析,然后提出小组的意见在全班讨论,同时对他的意见进行评价。这种形式有利于培养学生良好的思维品质和小组合作意识。这一过程我是这样设计的:
师:梯形和我们以前学过的图形有什么关系呢?我们能不能把梯形转化为以前我们所学过的三角形或平行四边形呢呢?请在刚才你所画的图上把你的转化方法画出来并和你的同桌交流。
师:(大屏幕展示转化的几种常见方式)。
师:它们被转化成了什么样的图形?
学生答:
[做一做]:
生:等腰梯形是一个轴对称图形。
类比平行四边形和矩形、菱形、正方形的探究方法来研究一下等腰梯形的边、角、对角线有什么关系?(四人一个小组合作学习)。
生:边:一组对边平行,两腰相等。
角:同一底边上的两底角相等。
对角线:对角线相等。
教师提问几个组并对学生的结论给予评价总结。
(大屏幕展示)等腰梯形同一底边上的两个内角相等。
等腰梯形的两条对角线相等。
高三数学说课稿篇十
《分数的乘法》是六年级第一学期《分数的运算》一节的内容之一,是在学习分数的加减法之后,分数的除法之前的一节内容。它既与整数的乘法有着内在的联系,也是后期进一步学习分式的乘法的基础。但在学习这节内容前,教材中没有对“求一个数的几分之几是多少”这一内容作过详细介绍,所以我在教学设计中,增加了“一个数乘以分数的意义就是求这个数的几分之几是多少”的内容,以便为本节课的教学做好铺垫。再通过学生自我探索、观察、归纳得出分数乘法的意义和法则。
知识与技能目标、过程与方法、情感与态度是新课标提出的三位一体的目标,结合这样的要求,我对本节课确定的教学目标是:
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2.培养学生动手操作的能力和观察推理能力。
3.养成计算仔细、书写规范的良好的学习习惯。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
1、针对教学重点,在教学中我创设了学生熟悉并感兴趣的现实情景。并通过电脑媒体演示和学生动手操作,来增强学生的感知力,由扶到放,让学生主动探索,获取知识。
2、针对教学难点,本课遵循三条原则:直观性原则、启发性原则和循序渐进原则,从教学实际需要出发,设计了一系列学生动手操作的活动及练习整个教学过程着重突出探、疑、动、悟。
3、学法指导。
根据学生的认知特点及思维能力,本课在学法上主要讲究既要重操作,又要重学习。
一、复习准备。
1.口算题。
课件出示:
2/7×3=3/5×15=。
20×1/4=3/8×6=。
l学生独立在作业纸上写得数,完成后集体对正。
l交流:怎样计算分数乘整数?
2.准备题(例3改编)。
课件动画展现情景:工人叔叔介绍,“我每小时粉刷这面墙的1/5”,小精灵提出问题,“工人叔叔2小时粉刷这面墙的几分之几?”
l学生独立解答,完成后指名汇报、对正。
l提出问题:怎样画图表示工人叔叔2小时粉刷这面墙的几分之几呢?
组织交流,课件演示。
二、探索新知。
(一)研究分数乘分数的计算方法(例3)。
1.乘几分之一。
课件动画展现情景:小精灵提出问题,“工人叔叔1/4小时粉刷这面墙的几分之几?”
l学生思考怎样列式,指名回答并说出列式的根据。
l引出课题,板书:分数乘分数。
l提出问题:1/5×1/4怎样计算呢?
师生交流,引导学生用画图的方法研究。
学生用尺子在学具长方形中画图表示,教师巡视,个别指导。
l展示学生所画示意图,同时课件演示,明确1/5×1/4的算理。
l完成1/5×1/4的计算。
2.乘几分之几。
课件动画展现情景:小精灵提出问题,“工人叔叔3/4小时粉刷这面墙的几分之几?”
l指名回答怎样列式。
l提出问题:×怎样计算呢?
学生用尺子在学具长方形中画图表示,教师巡视,个别指导。
l展示学生所画示意图,同时课件演示,明确1/5×3/4的算理。
l完成1/5×3/4的计算。
3.总结分数乘分数的计算方法。
课件提出问题:怎样计算分数乘分数?
组织学生交流,课件相应出示并摘要板书。
[设计说明:引导学生及时归纳,总结计算方法。]。
(二)进一步研究分数乘分数的计算(例4)。
课件动画展现情景:蜂鸟自我介绍并提出问题,“我是目前所发现的世界上最小的鸟,也是唯一能倒飞的鸟。我也能侧飞,还能停在空中不动呢!我每分钟可飞行3/10千米,同学们,你们知道我2/3分钟飞行多少千米吗?”
l指名列出算式。
l学生在作业纸上独立计算,教师巡视、了解。请不同写法的学生上黑板书写。
l集体订正,对比不同,确定适合自己的写法。
重点强调:能约分的可以先约分,再计算。
三、巩固应用。
1.教科书第11页的“做一做”
课件出示:1/3×1/48/9×3/106×11/12。
l学生独立在作业纸上计算,教师巡视、检查。
l请三名学生上黑板书写。
l完成后集体订正,针对发现的问题及时强调、纠正。
[设计说明:通过单纯的计算练习,巩固学生对分数乘分数的计算。]。
2.练习二的第6题。
课件动画展现情景:粉笔自我介绍并提出问题,“我是一枝粉笔,我的身长是3/4分米。你知道2枝粉笔长多少分米吗?1/2枝呢?2/3枝呢?”
l学生独立列式,解答。
l完成后集体对正。
交流:这节课有什么收获?
[设计说明:通过交流,对本节课所学知识进行系统回顾与总结,正确评价自己的学习。]。
高三数学说课稿篇十一
一、找准学生学习新知的“最近发展区”,在大背景下认识分数。
1、分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。教学时,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。
2、以往我们在初次教学分数时,总是以单个的物体的进行平均分,然后“半个”无法用整数表示的时候就引入了分数,优点是这样分数出现的实际需要性能够凸现,学生对分数的产生印象深刻;缺点是这样以单个的物体入手,学生对分数的认识受到局限,会导致到高段学习分数的意义的时候,对单位“1”难以理解和接受。其实“一半”和“半个”是有区别的,只有“半个”才用分数表示是不全面的。因此,我在分数引入的时候,请学生说身边一些事物的一半,发现日光灯是11个,一半一下子无法说出来。同时一个圆的一半是多少也无法说清。然后,引出“所有事物的一半我们只用一个数表示出来”。从而引入分数二分之一,这样对于分数的认识放在了一个宽广的背景下来学习,学生体会到任何事物的一半都可以用一个1/2来表示。
二、加强直观教学,降低认知难度。
分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,教师充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,尽管学生在正方形纸上这出了几个几分之一的分数,并且用分数表示出来,但是学生在比较分数大小的时候,还是受到整数认识的影响,认为1/32比1/8大,于是课件显示猪八戒分西瓜的过程,学生直观的认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。
三、根据学生年龄特征,创设有趣的问题情境。
对于小学生来说,数学学习往往是他们自己生活经验中对数学现象的一种“解读”.在教学中,如果能密切联系学生的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,那么学起来必然亲切、有趣、易懂了。学生的好胜心理强,教师在学生认识了1/4。纸上折了1/4后,谁还能折出其它分子是1的分数,学生动手积极性很高,纷纷折出了其它分数。当问谁折的分数大的时候学生就更愿意比了。起初,学生对分数的比较这一知识停留在比较表面、比较肤浅的水平上。他们用整数的大小比较方法来比较分数,教师也不做出判断,而是利用学生喜欢听的故事,将知识蕴于故事中,在听故事、看课件演示中,使学生主动得构建自己的知识,而不是被动地去接受知识。当回过头来再比谁折的分数大的时候,学生都笑了。而教师也不必再多说什么,学生已经自己推翻了先前的认识。
在整个课堂预设时,想的比较完美,事实上在真正上这堂课的时候有很多的缺憾、很多教学环节还有待完善。从整体上认识分数,对三年级学生而言是否要求拔得过高,在折分数操作时是否需要及时的比较等等。我想只有一次次积累、一次次思考,才能上出真正平实而有效的数学课。
高三数学说课稿篇十二
1、说课内容:人教版实验教材四下第一单元《四则混合运算》例4(两个商(积)之和(差)的混合运算)。例4的教学是在学生学习了加减混合运算、乘除混合运算、积商之和(差)的混合运算的基础上进行教学的,是进一步学习四则混合运算的基础。因此,要引导学生在解决具体问题的过程中,掌握混合运算顺序,体会混合运算顺序的合理性,为后续学习打好基础。
2、本课的教学目标:新课程指出:要确立包含知识与技能、过程与方法、情感态度与价值观的三维目标体系。根据教材的特点,结合四年级学生的实际水平,本节课确定如下教学目标:
(1)、让学生在解决实际问题的过程中,感受用小括号是解决实际问题的一种策略。
(2)、使学生掌握含有两级运算(含有小括号)的运算顺序,并能正确计算。
(3)、通过思考、自主探究,让学生主动地参与教学活动。培养学生的主体意识、问题意识、探索精神、协作交流意识。培养学生独立思考和从不同的角度考虑问题的习惯。
3、本课时的教学重点和难点:
探求科学、合理的解决问题的方法是教学重点,熟练掌握带有小括号的混合运算的顺序是本节课的难点。
教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”在课程标准的指导下,并结合解决问题教学的特点,我认为教学中成功的关健在于:教师的“教”立足于学生的“学”。
1、从学生的思维实际出发,激发探索知识的愿望。
不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的`人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
2、坚持面向全体,以学生发展为本。
课程标准要求不同的人在数学上得到不同的发展。为此,我将设计难度不同的问题,兼顾到不同层次的学生,让每个学生都有所得,都有机会体会到成功的喜悦。设计练习也注意坡度,既有基本练习,也有发展性练习,尽最大的努力体现因材施教,促进学生个性发展,并在空间、时间上为学生提供发展的充分条件。
3、改变学生的学习方式,让学生合作学习,培养学生的合作意识。
自主探索、合作交流是学生学习数学得重要方式。转变老师的角色,给学生较大的空间,开展探究性学习,让他们进行独立思考,并与同伴交流,亲身经历提出问题、解决问题的过程,为学生创设一个轻松愉快的学习环境,易于学生积极主动获得新知并体会学习的乐趣。
数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。
第一个环节:创设情景,提出问题。
同学们还记得“冰雪天地游乐场”吗?前两天我们曾去过滑冰区,也到过滑雪区,在那里探索过不少的数学问题。今天咱们到冰雕区走一走,一起去研究一下冰雕区里的数学问题好吗?(课件出示冰雕区的场景)。
你从图中了解了哪些数学信息?(这里给出的信息是:冰雕区上午有游客180位,下午有270位,每30位游客需要一名保洁员。)。
根据这些信息,你能提出哪些数学问题?
(对于前面的几个一步计算的问题在学生边提出问题的时候边请其他学生解决,最后的一个问题需要好几步才能解决,那我们共同来研究这个问题好吗?)。
(设计意图:鼓励学生大胆提出问题,使学生对探究规律产生浓厚的兴趣,激发学生的求知欲,形成了学习的心理高潮。)。
第二个环节:自主探究、解决问题。
这是学生自主探究新知、自主解决问题的中心环节。在这一环节,教师根据学生的认知规律和知识结构的特征,给学生提供尽可能多的材料信息,留足思维的时空,组织学生通过有目的的观察、交流、讨论等方法,自主解决问题,主动建构自己的认识结构。
通过怎样解决“下午要比上午多几名保洁员?”这个问题呢?
同学们能不能通过算式把自己解决问题的过程表示出来呢?放手让学生独立思考写出算式。这时候教师通过巡视找出不同的解决方法,请学生上来板书算式,出现的算式可能是:
180÷30=6=9-6=90÷3090÷30=3。
9-6=3=3=3。
然后请板书的学生说说自己的思考过程,也可以请其他的学生来猜猜这位同学的思考过程。
比较2和3两个算式:这两个算式的不同?请学生具体解释一下270-180为什么要用括号?让学生体会到解决问题的思路不同,解决方法也不同,计算的步数也是不同的。
(再请学生分别说说这两个算式的计算过程,每一步的含义。)。
小结:括号是用来改变运算顺序的。当你列出的综合算式的运算顺序与实际需要的运算顺序不相符时,就用括号来改变运算顺序。比如(擦去(270-180)÷30中的括号)这样的算式中先算什么?按照混合运算顺序的规定是不能先算270-180的,要想先算这部分就要用括号把这一步括起来。这个算式才正确表示了我们解决问题的方法步骤。
(设计意图:在这个环节中,在自主探索的基础上,教师给学生提供充分表达自己见解的机会,阐述自己得出的结论探究过程及疑难问题。然后根据学生反馈的信息,组织、引导学生通过个体发言、小组讨论、辩论等多种形式进行辨析评价,使学生的认知结构更加稳定和完善。)。
第三环节:多层训练、拓展创新。
此环节依据教学目标和学生在学习中存在的问题,教师挖掘并提供创新素材:设计有针对性、代表性的练习题组(基本题、变式题、拓展题、开放题),让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步的培养与提高。
练习形式:
(一)、巩固练习。
2、错例分析,提高解题的能力。
(二)、变式练习。
把下面的三个算式列成一个综合算式。
120+180=300300÷6=5050×26=1300。
(三)、发展练习。
拓展:在一道算式不同的位置添上括号,运算顺序得到改变,在改变运算顺序的过程中加深对运算顺序的理解,深化对知识的理解。
140÷4+3×2。
(1)使运算顺序为加法、除法、乘法,在什么位置添上括号。
(2)使运算顺序为乘法、加法、除法,在什么位置添上括号。
(设计意图:旨在通过各种形式的练习,提高学生学习兴趣,巩固知识,强化重点、突破难点)。
第四个环节:小结质疑、自我评价。
(设计意图:培养学生敢于质疑,勇于创新的精神)。
评价:首先自评,你对自己学得怎么样?接着生生互评。表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
高三数学说课稿篇十三
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观。
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的.基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。
在我们的课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
(一)温故而引新,巧妙入境。
这个过程我展示3个方面的复习内容:
(1)我知道圆柱的特征是。
(2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。
(3)你知道长方形的面积怎样计算吗?
以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。
(二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。
在此我用富有激励性的语言来引导学生:
请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。)。
你知道圆柱的表面积指的是什么吗?(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。)。
这就是我们今天研究的主题《圆柱的表面积》。
这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。
(三)动手操作,合作研究,汇报交流,发现联系,总结方法。
1、动手操作。
你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看。
让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成平面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。
2、合作研究。
如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?请你和你的同伴说说看。
3、汇报交流。
让学生把自己的展开结果展示给大家看。
4、进行推理,总结方法。
引出例1:已知一个圆柱的底面直径是0.5m,高是1.8m,求它的侧面积。(得数保留两位小数)。
5、归纳新知。
6、联系生活,巩固练习,培养能力。
这一环节是巩固内化空间基础知识,培养拓展空间思维,形成学生对空间的感受能力,学习关于空间几何一些简单知识点的重要环节。因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,使学生能够把所学的知识运用于解决生活中的实际问题中。让他们感受到数学与生活的紧密联系数学来源于生活又作用于生活。这一过程我安排了课本上例3.让学生学会用数学知识解决生活中的实际问题,同时让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算,讲解进一法的意义和使用范围。
(四)全课总结,促进构建。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的。
这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。
高三数学说课稿篇十四
各位专家,各位评委,大家好。
在学习本课内容以前,学生已经系统地学习了(),已经有了()的经验,本节课教材首先出示()场景图,列举了()种方法来解决问题,联系已在生活中的感性经验,目的是让学生(感受解决问题策略的多样性,方法的多样化),提高学生解决问题的能力。
基于以上对教材的认识,根据数学课程标准的基本理念,制定了如下目标:
1、
2、
3、
本课时的重难点是:
在分析教材,合理选择教法与学法的基础上,我预设的教学程序分()大环节进行:
(下面就以上四大环节做具体的阐述)。
第一环节:创设情景,激趣导入(引出问题、发现问题,激疑导入)。
这一环节我通过创设()情景,让学生主动提出()问题,从而引出课题()。
(爱因斯坦说:“提出一个问题比解决一个问题更重要。”老师经常问学生“你还能提出哪些数学问题”,有助于培养学生从数学角度提出问题的意识与习惯,从而促使学生在下面的环节中进行研讨、探究、思考,也为以下解决问题的环节做好铺垫。)。
古人云:疑者,觉悟之机也。这种导入能激起学生学习的兴趣和欲望,就如在其“思维的水池”中投以一片砖石,激起思维的波澜,收到“一石冲开水底天”的效果。
第二环节:自主合作、探索方法。(研究问题、解决问题)。
这一环节我分()个层次组织教学。
第一层次,独立思考、(互相讨论)说说方法。
第二层次,选择方法,小组合作(独立计算)。
第三层次,互相交流,比较分析,进行小结。
(这样的设计,以提高学生解决问题的能力为落脚点,让学生从事主动的观察,猜测,推理,实验,交流等活动,鼓励学生提出多种解决问题的方法,使学生在解决问题的活动中不知不觉的受到数学思想方法的熏陶和感染,从而进一步体验到解决问题策略的多样性,培养实践能力和创新精神,并在分析比较中,感悟和寻找解决问题的最佳策略。)恰如教育家文兰森所说:最不完美的创新也要比完善的守陈伟大一百倍。
牛顿有句名言:没有大胆的猜想,就没有伟大的发明和发现。
(放手让学生操作,并把学生的操作与语言、思维联系起来,这样的操作就不仅仅是操作,而是为培养学生的思维能力提供了源泉,让学生凸现真实的个性,他们在操作中求新、求异,有利于创新能力的培养和个性的发展。赞可夫有句名言:教会学生思考,对学生来说,是一生中最有价值的本钱。)。
第三环节:实践应用,巩固深化(联系实际、拓展应用)。
结合书中练习,分()层次进行巩固。
1、
2、
3、
4、
(在这些多层次的练习中,运用学到的知识来解决他们学习生活中的实际问题,既是对知识的巩固,又是对思维的又一次拓展,使他们在解决问题的同时,体验数学学习的快乐,体验学习数学的价值。)。
第四环节:总结提炼。
(俗话说:编筐编篓,全在收口,通过总结,促进学生对一堂课的教学进行梳理,并把学习的触角向外拓展延伸,培养学生探究的能力。)。
整堂课,我力求体现以下教学理念:
1、体现数学与生活的密切联系,让学生在生活中“触摸”数学。
2、注重数学思想方法的渗透,鼓励解决问题策略与算法的多样化。而鼓励解决问题策略多样性的前提是把学习的主动权还给学生。古希腊学者普罗塔戈说过:头脑不是一个被填满的容器,而是一束待点燃的火把。把学习的主动权——学习交流、探索新知的机会交给学生,让学生有足够的时间独立思考、探索和建构自己的数学意义,最大限度的发挥学生的自主性,创造性。并通过比较各种策略与算法的特点,选择优化适合自己的策略与算法。从而发展学生的思维,教育家裴斯泰洛齐认为:教育的主要任务,不是积累知识,而是发展思维。让课堂成为学生思维的运动场。
3、重视培养学生应用数学的意识与独立解决问题的能力,把数学学习与解决生活中的数学问题结合起来,培养学生学会用数学的眼光观察现实生活,丛中发现问题,提出问题,解决问题,体会数学的广泛应用与实际价值,获得良好的情感体验。
4、始终让学生成为学习的主人,注重评价,关注学生情感与态度形成的发展,让问题解决的过程,也成为学生们态度,情感,价值观及学习能力全面发展的过程,让问题解决的过程,成为学生们获得良好的情感体验的过程。让我们的数学课堂充满生活气息,充满人文气息,充满师生的灵性与共性。
各位评委,以上所说的,只是我预设的一种方案,但是课堂是千变万化的,会随着学生和教师的灵性发挥而随机生成的。预设效果如何,最终还要和学生、课堂结合。
说课不足之处还请多多指导,同时希望各位评委能给我一个实践的机会,谢谢!
高三数学说课稿篇十五
《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。
二、学情分析。
我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。
三、教学目标。
知识与技能目标:在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。
过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。
情感、态度与价值目标:通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。
四、重点难点。
重点:探索并掌握图形坐标变化与图形变换之间的内在关系。
难点:坐标变化和图形拉伸、压缩间的关系。
五、教法与学法分析。
1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发。为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的教法为:
(1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。
(2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。
2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:
(1)探究学习法。把问题留给学生,引导他们去解决问题。
(2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。
教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。
教学环节师生活动过程设计意图。
新课导入课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,—1)(3,0)(4,2),(0,0),并顺次连接。
问题:所作图形象什么?
让学生讨论。
总结。
出自己的结论,教师不作任何说明。
要求学生在讨论的基础上去作图:让鱼向右移动3个单位。
作出图形,比较所作图形是否和所得结论吻合。
多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。
问题引入。
探索新知想一想议一议。
通过课件演示其变化过程,验证学生的答案。
二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?
由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。
综合学生的结论,引导他们得出如下结论:
当纵坐标不变,横坐标增加时,图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移。横坐标增加或减少a(a0)时,图形向右或向左平移a个单位。
当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移。纵坐标增加或减少a(a0)时,图形向上或向下平移a个单位。把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的印象,又培养了他们学习和解决数学的能力。