解简易方程的教学设计(汇总19篇)
总结是对过去的一种回望,同时也是对未来的一种期许和规划。在写总结之前,可以先列出要点,然后再进行整理和归纳。这些范文可能涵盖了一些你之前从未接触过或思考过的内容。
解简易方程的教学设计篇一
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
理解方程的意义,掌握方程与等式之间的关系。
天平一只,算式卡片若干张,茶叶筒一只。
一、创设情境,自主体验。
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索。
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知。
在教学解方程和方程的解的概念时,通过出示两道自学思考题。
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价。
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
解简易方程的教学设计篇二
1、使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。
2、培养学生的分析比较能力和再创造意识。
3。培养学生认真审题,自觉检验的良好学习习惯。
六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。
商品上标价分别为(字母表示的为商品价格不知道的):
上衣65元巧克力y元。
钢笔40元皮鞋60元。
书x元文具盒20元。
如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?
(三种情况,大于、小于、等于)。
如果请你自己购物的话,你准备选择什么。
把上面的式子分类,你认为可以怎么分?
1。小组讨论,介绍如何分。
2。教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。
3。今天我们就来研究方程。(板书课题)。
4。提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。
知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。
5。汇报:说说你写的方程是怎样的?
提问:如65+x是方程吗?为什么?
由此看出:具备方程的两个条件是什么?
可以用一句话或者图来表示吗?
说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。
《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。
听了这段话,你有什么感想?
1、师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?
生练习求未知数,指名板演。(两题)。
刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。
其实我们以前求未知数x的过程,实际上就是在解方程。
2、选出方程的解,并画上横线。
x+8=30(x=38x=22)。
x=5是方程()的解。15x=36x=30。
12—x=8(x=4x=20)。
提问:你是怎样找出方程的解的?
3。检验。
师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。
请大家把书翻到80页,看一下方程的检验过程。
需要注意的是检验的格式,自己任意挑选一题进行检验。
做个游戏,好吗?
1、分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。
2、求出最好这组中的两道方程中的解,并检验。
解简易方程的教学设计篇三
学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的道理)列出方程,对于解比较简单的方程,学生并不陌生。
比如:x+4=7学生能够很快说出x=3,但是就方程的书写规范来说,有必要一开始就强化训练,老师规范的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。
不难看出,学生经历了把运算符号“+”看错成了“-”,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的机会。老师以人为本,充分尊重学生,也体现在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关怀的气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很安全的心理空间,不然,他怎么会对老师说“老师,我太紧张了”,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。
解简易方程的教学设计篇四
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。
教学重点:理解等式的性质,理解方程的意义。
教学难点:利用等式性质和方程的意义列出方程。
教学准备:课件。
教学过程:
一、预习测试。
直接写出得数:
二、自主学习。
1、交流预习作业,指名学生口答。
2、出示天平。
知道这是什么吗?你长大它是按照什么原理制造的吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?
3、教学例1,出示例1图。
你会用等式表示天平两边物体的质量关系吗?
50+50=100(板书)。
说说你是怎样想的?
(1)指出等式的左边,等式的右边等概念。
(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)。
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)。
3、教学例2,出示例2图。
天平往哪一边下垂说明什么?(哪一边物体的质量多)。
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:
x+50100x+50200x+50=150x+x=200。
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)。
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)。
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)。
4、讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
5、教学试一试。
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
三、多层练习。
1、完成“练一练”第1题。
独立完成判断后说说想法。
2、完成“练一练”第2题,第3题。
交流所列方程,说说你为什么这样咧?你是怎么想的?
3、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
4、完成练习一第2题。
理解题意,说说数量关系式怎样的?
列出方程并交流。
5、完成练习一第3题。
四、课堂总结。
通过学习,你有哪些收获?
五、作业。
1、完成《补充习题》。
42、每日一题。
写出一些方程,并在小组里面交流。
六、板书设计。
方程。
50+50=100x+50100x+50=150。
x+50200x+x=200。
七、预习布置:
八、教学反思。
第一单元第二课时等式的性质。
教学目标:
1、使学生在具体的情景中的初步理解“等式的两边同时加上或减去同一个数,所得的结果仍然是等式”
会用等式的性质解简单的方程。
2、使学生在观察、分析和交流过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点:会用等式的性质解方程。
教学难点:对等式第1个性质的探索过程。
教学准备:课件。
教学过程:
一、预习测试。
下面哪些是等式,哪些是方程?
二、自主学习。
1、交流预习作业。
(1)指名学生回答预习作业。
(2)什么是等式?什么是方程?等式和方程有什么联系?
2、教学例3。
(1)我们已经认识了等式和方程。今天这节课,将继续学习与等式、方程有关的知识。
你能根据天平两边的砝码质量写一个等式吗?(20=20)。
现在的.天平是平衡的,如果将天平的左边加上一个10克的砝码,这时天平会怎样?(失去平衡)。
要使天平恢复平衡可以怎么办?(在另一边加上一个10克的砝码,或拿走这个10克的砝码)添上一个10克的砝码。
解简易方程的教学设计篇五
“用字母表示数”是义务教育教科书人教版五年级上册第五单元《简易方程》中的第一部分内容。这部分内容是在学生已经学习了整数的加、减、乘、除四则运算以及常见的数量关系和几何计算公式的基础上进行的的。它是今后进一步学习简易方程、周长、面积、体积等字母公式的基础。它是学生学习数的概念方面的一次重大发展,是学生有算术到代数的重要转折点,也是学生进一步学习代数知识的'基础。
1.学生已经接触过一些用字母表示的计算公式和预案算律,对简单的实际问题中的基本数量关系也比较熟悉,学生用字母表示数的必要性和作用已有了一定的感性认识,有一定的观察、分析、概括能力,这些都有助于学生的学习。
2.学生已有生活经验和学习该内容的经验:学生对日常生活中使用字母表示电视台标、地名、组织等给人们带来许多方便的现象有一定的了解。
3.学生学习该内容的困难:学生是第一次接触用字母表示数的方法,从熟悉的算式引出含有字母的式子,从具体的数到用字母表示数是认识上的一次飞跃,对学生来说是相当困难的,也非常不适应。因此,教学中应充分利用现实情境,让学生再体会数量关系的基础上,理解用字母表示数的意义,体会用字母表示数的优越性。
1.在现实情境中,学习和理解字母表示数的意义,能结合具体情境,利用字母表示数进行表达与交流,体会用字母表示数的简洁性。
2.在探索数量关系的过程中,进一步发展学生数感、符号感。
3.通过数学活动来激起学生的学习热情,培养学习兴趣。
1、在现实情境中体验和理解用字母表示数的意义。
利用向袋子里放笔的情境,让学生感受用字母表示数的必要性。
2、在对比交流中,深化理解概念。
利用前后袋子笔的数量关系,理解用字母表示数的意义。
一、导入新课,提出问题。
直接出示课题。提问:你在哪些地方见过用字母表示的?
二、互动探究。
1.用字母表示数。
咱们班一共有()人,老师带来了()笔。
预设:学生用数字猜测。
提问:你们能确定这些答案是正确的吗?
预设:学生用字母表示。
追问:你是怎么想的?
讨论分析:我们不确定里面有几支笔,但对于a你知道些什么(引出范围)。
2.用字母表示数量关系。
情境二:向袋子里加2支笔。
提问:现在你能确定里面有几支笔吗?那你怎么表示呢?
预设:a。
反馈:用a表示合适吗?
另一个字母b。
反馈:与原来袋子不同了,不能用a表示(不同的未知数用不同的字母表示)。
a+1。
比较分析:b和a+1哪个更好。
反馈:a+1既能表示2号袋子里的笔,又能表示比1号袋子多了一支笔。
爸爸比小红的年龄大30岁,用你自己喜欢的方式表示爸爸和小红的年龄。
假设小红的年龄是10岁,你知道爸爸的年龄吗?
3.用字母表示计算公式。
每支笔为2元,你知道老师买这笔需要多少钱吗?全校所有需要的笔呢?(2n)。
刚才我们用2n表示全校所有笔的价钱,4m你认为可以解决什么问题呢?
解简易方程的教学设计篇六
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。
理解等式的性质,理解方程的.意义。
利用等式性质和方程的意义列出方程。
课件。
一、预习测试。
直接写出得数:
二、自主学习。
1、交流预习作业,指名学生口答。
2、出示天平。
知道这是什么吗?你长大它是按照什么原理制造的吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?
3、教学例1,出示例1图。
你会用等式表示天平两边物体的质量关系吗?
50+50=100(板书)。
说说你是怎样想的?
(1)指出等式的左边,等式的右边等概念。
(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)。
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)。
教学例2,出示例2图。
天平往哪一边下垂说明什么?(哪一边物体的质量多)。
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:
x+50100x+50200x+50=150x+x=200。
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)。
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)。
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)。
4、讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
5、教学试一试。
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
三、多层练习。
1、完成“练一练”第1题。
独立完成判断后说说想法。
2、完成“练一练”第2题,第3题。
交流所列方程,说说你为什么这样咧?你是怎么想的?
3、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
4、完成练习一第2题。
理解题意,说说数量关系式怎样的?
列出方程并交流。
5、完成练习一第3题。
四、课堂总结。
通过学习,你有哪些收获?
五、作业。
完成《补充习题》42、每日一题。
写出一些方程,并在小组里面交流。
方程。
50+50=100x+50100x+50=150。
x+50200x+x=200。
解简易方程的教学设计篇七
概念:
含有未知数的等式,叫做方程。(等式不一定是方程,方程一定是等式。)。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程,叫做解方程。
性质:
方程两边同时加上或减去同一个数,左右两边仍然相等。
方程两边同时乘以同一个数,左右两边仍然相等。
方程两边同时除以同一个不等于0的数,左右两边仍然相等。
列方程解决问题的步骤是:
(1)设未知数。
(2)根据等量关系列方程。
(3)解方程。
(4)检验、写答。
解简易方程的教学设计篇八
义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。
(二)教学目标。
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学习习惯的培养。
(三)教学重、难点。
(1)“方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
(四)教学准备。
多媒体课件、单行纸一张。
(五)教学过程。
1.揭示课题,复习铺垫。
生:(100+x)克。
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)。
师:请你根据图意列一个方程。
生:100+x=250(课件显示:100+x=250)。
师:这个方程怎么解呢?就是我们今天要学习的内容――解方程。(板书课题:解方程)。
2.探究新知,理解归纳。
(1)概念教学:认识“方程的解”和“解方程”的两个概念。
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150。
师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100(课件显示:100+x-100=250-100)。
师:这时天平表示未知数x的值是多少?
生:x=150(课件显示:x=150)。
师:是的,xxx同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。
师:根据刚才的实验,我们来认识两个新的概念―――“方程的解”和“解方程”。
师:(课件显示x=150的下画线)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)。
师:(课件显示:方框)。
100+x=250。
100+x-100=250-100。
指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)。
师:同时还要注意“=”对齐。
师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的?
(学生独立思考,再在小组内交流。)。
师:谁来说说你想法?
生1:“解方程”是指演算过程。
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]。
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]。
师:四人小组讨论方程左右两边为什么同时减3?
[学生独立思考,再在小组内交流。]。
师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)。
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。
师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)。
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)。
师:这时天平表示x的值是多少?
生:x=6(板书:x=6)。
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?
生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:
验算:方程的左边=6+3=9。
所以,x=6是方程的解。)。
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
解简易方程的教学设计篇九
关于方程和解方程的知识,在初等代数中占有重要地位。中小学生在学习代数的整个过程中,几乎都要接触这方面的知识。从这个意义上说,前一节学习用字母表示数为本节课学习方程和以后的解方程打下了接触。教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。为提供更为丰富的感知材料,教材一方面由小精灵要求:你会自己写出一些方程吗?另一方面通过三位小朋友在黑板上写方程的插图,让学生初步感知方程的多样性。
述生活中的等量情景。学生对于利用天平解决实际问题较感兴趣,而对于从各种具体情境中寻找发现等量关系并用数学的语言表达,则需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
1、知识与技能:结合情景,理解、掌握方程的意义。会用方程表示简单情境中的等量关系。
2、问题解决与数学思考:经历从生活情境到方程模型的建构过程,感受方程思想。
3、情感与态度:在学生的自主探究过程中,感受数学的魅力,培养学生的观察、描述、分类、抽象、概括、应用等能力。
理解方程的含义,会用方程表示简单情景中的等量关系。
用方程的思想刻画简单情境中的等量关系。
多媒体课件。
(一)感受等式,理解等式。
利用天平的直观性引导学生将生活中的情景用等式或不等式表达出来。
(二)对式子进行分类。
在引导学生想法的前提下,让学生自主对式子进行分类。
(三)引入方程概念。
(四)理解方程意义。
借助天平呈现出简单的相等的情景,让学生经历将生活情境转变成数学语言的过程。
(五)感受方程的价值。
(六)课堂小结。
(一)感受等式,理解等式。
1、出示天平的图片,让同学们了解天平的基本功能,知道只有当两边放的物体重量相等时天平才会平衡。
师:我们一起用天平做个试验。
课件演示,天平左边放两个鸡蛋,右边放一本数学书,书和鸡蛋都放在天平的上方,不接触天平。
师:你觉得如果将书和鸡蛋放在天平上后,天平会发生怎样的变化?
【预设】学生会有不同的看法,一部分同学会认为无法判断,理由是不知道数学书和两个苹果谁重。
生:平衡。
生:40+40=80。
2、出示两支篮球队比赛的图片,其中红队得分17分,蓝队得分24分。
师:你能用数学式子描述出红蓝两队比分之间的关系吗?生:1724。
【预设】经过前面对数学书和鸡蛋重量的比较,学生已经能够想到,18+x和24之间的大小关系是不确定的,会有三种情况。
师:你是否能用式子表示出这三种关系呢?
生:如果红队进的球很少,那么比分还是没有蓝队高,18+x24;如果红队进的球很多,比分就会超过蓝队,18+x24;如果红队正好追上蓝队,那就是18+x=24。
生:等于小于和大于。
设计意图:利用直观的天平平衡,很容让学生初步感知物体质量之间自然产生的相等关系,等式是方程的生长点。而利用连续进球个数的数量不确定,则将未知数引入到式子中。
解简易方程的教学设计篇十
教学目标:
1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。
2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。
教学重点、难点:应用等式的性质,理解和较熟练掌握简易方程的解法。
教学过程:
一、揭示课题。
我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。
二、复习用字母表示数。
1、用含有字母的式子表示:
(1)求路程的数量关系。
(2)乘法交换律。
(3)长方形的面积计算公式。
2、做“练一练”第1题。
让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。
3、做练习十四第1题。
指名学生口答。选择两道说说是怎样想的。
1、复习方程概念。
提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)。
2、做“练一练”第2题。
(1)做“练一练”第3题第一组题。
(2)做“练一练”第3题后两组题。
指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。
(3)做“练一练”第4题。
让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。
四、课堂小结。
今天复习了哪些知识?你进一步明确了什么内容?
五、布置作业。
课堂作业;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。
家庭作业;练习十四第3题前三题、第5题。
解简易方程的教学设计篇十一
学习目标:
1.使学生初步理解二元一次方程与一次函数的关系。
2.能根据一次函数的图像求二元一次方程组的近似值。
3.能解二元一次方程组的方法求两条直线的交点坐标。
学习重点:
1.用作图像法求二元一次方程组的近似值。
2.用解二元一次方程组的方法求两条直线的交点坐标。
学习难点:
1.做图像时要标准、精确,近似值才接近。
2.解二元一次方程组时计算准确,方法适宜。
学习方法:
先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。
自主学习部分:
问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。
(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?
(5)由以上的探究过程,你发现了什么?
(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。
合作探究:
(1)用做图像的方法解方程组。
(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点。
解简易方程的教学设计篇十二
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是简易方程解决问题教案,请参考!
学习目标:
1.探索具体问题中的数量关系和变化规律,能用线形示意图和柱状示意图分析问题。
2.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。
3.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。
学习难点:
分析与确定问题中的等量关系,线形示意图和柱状示意图分析问题。
教学过程:
一、创设情境,引入新课。
问题一:
一个书包进价为60元,打八折销售后仍获利20元,这个书包原定价为_______元。
二、合作质疑,探索新知。
三、自主归纳,形成方法。
如何利用线形示意图和柱状示意图分析实际问题。
巩固练习:
1、某商品的进价为80元,销售价为100元,则该商品的利润为元,利润率为;。
3.一种商品的买入单价为1500元,如果出售一件商品要获得利润是卖出单价的15%,那么这种商品的卖出单价应定多少元?(精确到1元)。
四、反思设计,分组活动。
五、发展能力,拓展延伸。
六、课堂小结,感悟收获。
通过以上问题的解决,你觉得怎样如何利用线形示意图和柱状示意图分析问题?
【课后作业】。
2.某种家具的标价为132元,按9折出售,可获利10%(相对于进货价).求这种家具的进货价.
解简易方程的教学设计篇十三
教学目标:
1、结合天平示意图,在观察、用式子表示数量关系、归纳、类比等活动中,经历认识等式和方程的过程。
2、了解等式和方程的意义,能判断哪些是等式、哪些是方程,能根据具体的情境列出方程。
3、主动参与学习活动,获得积极的学习体验,激发学习新知识的兴趣。
教学重点:等式和方程的意义,能判断哪些是等式、哪些是方程。
教学难点:等式和方程的意义。
教学过程:
一、创设情境。
1、课前谈话(出示跷跷板图)。
2、激情导入。
师:同学们,大家对跷跷板都很熟悉,其实我们有一种仪器,它和跷跷板很相似,你们知道是什么吗?出示课件天平示意图,让同学们说出天平的作用。
二、:新授。
利用天平设计一个闯关游戏:
第一关:左边是一个20克和一个30克的物体,右边是一个50克的物体,请学第二关:左边是一个230克和一个x克的物体,右边是一个80克的物体,请学生说一说相等关系,并列出等式,学生在自己的练习纸上试着写一写。(30+x=80)。
第四关:左边是一个20克和一个30克的物体,右边是一个50克的物体,让同学们先观察,独立思考,想想可以用一个什么算式表示。生说一说相等关系,并列出等式,学生在自己的练习纸上试着写一写。(20+30=50)。
三、
等式和方程。
1.教师结合算式介绍等式。
2.让学生观察等式,说一说这些等式有什么相同点和不同点。
3.介绍方程的概念。
4.鼓励学生用自己的话说一说什么样的式子是方程。
四、方程与等式之间有什么关系呢?
2根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围。
五、试一试。
先让学生独立思考,再回答。说一说是怎样判断的六、练一练。
第1题,先让学生看懂图,再尝试列方程。
第2题,让学生先读懂图,再试着列出方程。
七、这节课我们学习了什么?
八、
总结。
走近方程,走近数学,原来数学知识无处不在,就像我们形影不离的一位老朋友,希望同学们能更近地走近数学,走进数学。更多地了解我们这位教会我们生活本领的朋友。
等式。
(左边=右边)。
不等式20+30=50。
330+x=80。
20+30。
含有未知数的等式叫做方程。
解简易方程的教学设计篇十四
本文是本站小编为大家整理的五年级数学《解方程》教学反思范文,希望对大家有所帮助。
今天对五年级上册《解方程》进行了教学。本课主要对教学例一和例二进行了教学。
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。
当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待!
解简易方程的教学设计篇十五
(1)知识与技能:
结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。
(2)过程与方法:
培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。
(3)情感态度与价值观:
在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。
重点:体会函数零点与方程根之间的联系,掌握零点的概念
难点:函数零点与方程根之间的联系
1.创设问题情境,引入新课
问题1求下列方程的根
师生互动:问题1让学生通过自主解前3小题,复习一元二次方程根三种情形。
问题2填写下表,探究一元二次方程的根与相应二次函数与x轴的交点的关系?
师生互动:让学生自主完成表格,观察并总结数学规律
问题3完成表格,并观察一元二次方程的根与相应二函数图象与x轴交点的关系?
师生互动:让学生通过探究,归纳概括所发现结论,并能用相对准确的数学语言表达。
2.建构函数零点概念
函数零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。
思考:
(1)零点是一个点吗?
(2)零点跟方程的根的关系?
(3)请你说出问题2中3个函数的零点及个数?(投影问题2的表格)
师生互动:教师逐一给出3个问题,让学生思考回答,教师对回答正确学生给予表扬,不正确学生给予提示与鼓励。
3.知识的延伸,得出等价关系
(1)方程f(x)=0有实数根(2)函数y=f(x)有零点
(3)函数y=f(x)的图象与x轴有交点
解简易方程的教学设计篇十六
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。
知识重点掌握解方程的方法。
引入前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
教学过程新知学习。
(一)教学例1。
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3。
化简,得到x=6。
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的'变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
=6+3。
=9。
所以,x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2。
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
解简易方程的教学设计篇十七
2、使学生能根据应用题的特点选择恰当的方法来解答。
3、进一步培养学生分析数量关系的能力,发展学生的思维。
根据题目的具体情况选择合理的解题方法。
通过不同题型的训练使学生进一步掌握列方程解决问题的基本方法,而且能使学生进一步体会到方程是描述数量关系的一种常用和有效的数学模型,列方程解决问题具有独特的方法价值。激发学生探索数学规律的兴趣,有利于学生进一步感受到用字母表示数以及列方程解决问题的优越性。
一、揭示课题。
1、引入课题。
我们已经会根据几个数之间的等量关系列出方程。今天这节课,我们着重复习根据应用题数量之间的相等关系,列方程解答,(板书课题)通过复习,要能根据题意正确地列方程来解答应用题。同时还要能根据数量关系的特点,灵活地选择算术方法或用方程来解答应用题。
2、复习解题步骤。
提问:我们过去列方程解应用题的步骤是怎样的?
板书:(1)审题,用x表示未知数;
(2)找等量关系,列方程;
(3)解方程;
(4)检验,写答案。
你认为其中最关键的是哪一步?为什么?
指出:列方程解应用题要按照解题步骤进行,其中最关键的一步是找等量关系列方程。(板书:关键:找等量关系)因为方程是根据等量关系列出来的,只有等量关系找正确,对照等量关系列出的方程才正确。
学生个别口答后再整理。
2、京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)。
4、完成93页第6题。
(1)理解鞋的码数与厘米数的换算关系。
(2)进行码数与厘米数的换算。
强调:根据题目的'情况,合理选择方法,列算式或列方程。
5、完成93页的第7题。
理解“一种药品降价10%”的含义。
6、完成93页的第8题。
强调:(1)两种衬衫的原价相同,由于打的折扣不同,所以现价不同。(2)108原是这两中衬衫现价的和。
学生独立完成,指名说说思考过程。
指名板演,集体交流,说说解题思路。
两人一组,分组开展活动,适时互换角色。
三、全课总结。
通过这节课的复习,你有了哪些新的认识?还有哪些疑问?
学生互说体会。
四、拓展延伸。
解简易方程的教学设计篇十八
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;。
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
重点:二元一次方程的概念及二元一次方程的解的概念。
难点。
1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
创设情境导入新课。
1、一个数的3倍比这个数大6,这个数是多少?
1、发现新知。
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)。
2、巩固新知。
判断下列各式是不是二元一次方程(1)(2)(3)(4)。
3、师生互动再探新知。
(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)。
(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)。
若未知数设为,记做,若未知数设为,记做。
4、检验新知。
(1)检验下列各组数是不是方程的解:(学生感悟二元一次方程解的不唯一性)。
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)。
5、自我挑战三探新知。
有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
比较一元一次方程和二元一次方程的相同点和不同点。
相同点:方程两边都是整式,含有未知数的项的次数都是一次。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
解简易方程的教学设计篇十九
义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学习习惯的培养。
(1)“方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
多媒体课件、单行纸一张。
1.揭示课题,复习铺垫。
生:(100+x)克。
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)。
师:请你根据图意列一个方程。
生:100+x=250(课件显示:100+x=250)。
师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)。
2.探究新知,理解归纳。
(1)概念教学:认识“方程的解”和“解方程”的两个概念。
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150。
师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100(课件显示:100+x-100=250-100)。
师:这时天平表示未知数x的值是多少?
生:x=150(课件显示:x=150)。
师:是的,xxx同学的想法是正确的',方程左右两边同时减100,就能得出x=150。我们表扬他。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。
师:(课件显示x=150的下画线)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)。
师:(课件显示:方框)。
100+x=250。
100+x-100=250-100。
指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)。
师:同时还要注意“=”对齐。
师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的?
(学生独立思考,再在小组内交流。)。
师:谁来说说你想法?
生1:“解方程”是指演算过程。
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]。
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]。
师:四人小组讨论方程左右两边为什么同时减3?
[学生独立思考,再在小组内交流。]。
师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)。
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。
师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)。
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)。
师:这时天平表示x的值是多少?
生:x=6(板书:x=6)。
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?
生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:
验算:方程的左边=6+3=9。
所以,x=6是方程的解。)。
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
(3)练习。
师:现在老师看看同学们对于解方程掌握得怎么样。(出示课件)。
判断题。
a.x=3是方程5x=15的解。()。
b.x=2是方程5x=15的解。()。
考考你的眼力,能否帮他找到错误所在呢?
x+1.2=4x+2.4=4.6。
x+1.2-1.2=4-1.2=4.6-2.4。
x=2.8=2.2。
填空题。
x+3.2=4.6。
x+3.2○()=4.6○()。
x=()。
将课本59页做一做的第1题的左边一小题写在单行纸上。
(4)小结:解含有加法方程的步骤。(口述过程)。
3.拓展延伸。
(1)解方程x一2=15(课件显示)。
师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?
生:敢。
师:谁愿意读读这个方程?
[学生都争着读这个方程,可激烈了]。
师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。(指名xxx同学到黑板板演,其他同学在单行纸完成)。
[学生试着解方程并进行口头验算]。
(2)集体交流、评价、明确方法。
师:xxx同学做对了吗?
生:对。
师:方程左右两边为什么同时加2?
生:方程左右两边同时加2,使方程左边只剩x,方程左右两边相等。(由板演xxx同学面向大家回答)。
4.提炼升华。
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)。
生:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。
c)求出x的值。
d)验算。
5.全课小结,评价深化。
1、通过今天的学习,同学们有哪些收获?
2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
3、对老师的表现进行评价。
解方程。
例1:书本图。
x+3=9验算:x-2=15。
解:x+3-3=9-3方程左边=6+3=9解:x-2+2=15+2。
所以,x=6是方程的解。