小数比大小教学设计(优质19篇)
学习和工作中的总结是一种积累和提升,它能使我们不断进步,并在人生道路上不断超越自我。写一篇完美的总结需要明确目标和重点。如果你正处于总结的困惑中,不妨看看以下范文,从中找到关于总结的灵感和思路。
小数比大小教学设计篇一
新课标指出:“现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的.学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。”徐老师的这节课充分利用媒体教学,将小数点的移动这个抽象的过程生动形象地展现在学生面前,学生掌握较好,这一点在课堂练习中就已得到证实,学生都能很快报出答案。
本内容是在学生对小数和分数有了初步认识的基础上进行学习,小数点的移动变化规律可以大胆让学生主动去探索、主动去发现的。新课标指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。而在探索规律中,教师有点过于心急了,见学生未能较好的总结规律,教师就直接出示,这就使学生失去了主动性,变成了简单的记忆。教师可多留给学生学习、探索的空间,培养学生主动学习、主动探索的数学学习习惯。
小数比大小教学设计篇二
小数点位置移动引起小数大小的变化这节知识,是在学生已经掌握整数的有关知识,特别是十进制计数法以及小数的意义和性质等知识之后学习的,是小数的又一性质。它与前面讲的小数性质的不同在于,它主要研究小数点移动如何改变小数的大小。这一变化规律不仅是小数乘除法计算的根据,也是复名数与小数相互改写的重要基础。通过这部分内容的学习,还有助于培养学生用联系变化的观点认识事物。这部分教材安排了2个例题,例1教学小数位置移动引起小数大小的变化,例1教学小数点位置移动引起小数大小的变化规律的应用。
(2)通过观察、概括,培养学生的思维能力。
(3)激发学生学习数学的兴趣,培养合作意识和应用意识。
(一)谈话交流,引出课题。
(二)创设情景提出问题。
1、播放动画(教材例1情境图)话说孙悟空师徒四人来到一坐山头,孙悟空前去探路,不想,遇到一个妖怪,妖怪喝道:“猴头,交出你的师傅!”悟空叫道:“休想,看我金箍棒!”说着从耳朵里掏出一根0.009米长的金箍棒。妖怪看了哈哈大笑:“小样,用0.009米长的金箍棒就想把我打死!”就听孙悟空连声说:变!变!变!妖怪被9米长的金箍棒重重地砸死在下面。
2、提出问题。
(三)合作交流,探究问题。
设计意图:为了帮助学生发现规律,教材根据情境中变化的4个数据,列出了4个等式。左边都是以米作单位的小数,从上到下数字都相同,而小数点依次向右移动一位、两位、三位。右边分别是和左边相等的毫米数。这一环节可以在看动画片了解情境的基础上引导学生观察4个数据。问一问:这4个数据分别是多长?能不能用毫米为单位表示出来?在学生的讨论中板书。
然后再引导学生先从上往下观察,再从下往上观察,看看有什么规律。在这一环节充分发挥学生的主观能动性,进行自主探究与合作学习。新教材强调以人为本,发挥人的主动性。开展自学与小组讨论,让每个学生有机会充分发表自己的意见,体现了“促进学生全面发展”“面向全体学生”的精神,也实践了“自主探究与合作学习是学生学习数学的重要方式”的数学理念。培养了学生的自信心,也体现了学生是学习的主人。在获取知识的同时,情感、态度等方面都得到了发展。对于有困难的学生,教师可以这样进行适当的提示:
从上往下观察,然后讨论:。
1、0.009米到0.09米。
你是怎样看出的?
小数点向哪个方向移动了?
移动了几位?
2、0.009米到0.9米。
小数发生了怎样的变化?
3、0.009米到9米呢?
我们再从下往上观察,然后讨论:。
1、从9米到0.9米。
小数扩大了还是小了?
缩小的原数多少?
你是怎么看出的?
小数点向哪个方向移动了几位?
2、从9米到0.09米。
小数发生了怎样的变化?
3、从9米到0.009米呢?
你又发现了什么规律?
(四)交流评价,归纳总结。
1、小组汇报。
2、归纳总结。
(1)小数点向右移。
(2)小数点向左移。
移动一位,小数就缩小到原数的()分之()。
移动两位,小数就扩大到原数的()分之()。
移动三位,小数就缩小到原数的()分之()。
充分发挥学生自主能动性,让学生归纳总结得出结论。然后把规律简化,教师总结出记忆规律的口诀,左小右大1位10倍。
(五)巩固练习,拓展应用。
1、教材44页“做一做”
(六)教学例2。
对于小数学生已经很熟悉了,而对移动小数点改变小数的大小则是一个新的知识点,也是本节课所要学习的重要内容,为了不使学生感觉学的`累,必须设计一个与本课知识有关的并能引发学生兴趣的情景,然后提出新问题,学生在教师的引导下发现小数点移动的规律。并知道小数点的移动可以改变小数的大小。形成规范的规律表现形式后,设计几个不同形式的规律变式,让学生进行练习,加深对此规律的理解和掌握。
在教学的过程中,我考虑到这节课的内容比较抽象而且内容较饱和,因此我充分利用多媒体课件进行这部分内容的教学。
1、通过生动形象、逼真的多媒体课件出示的故事,激起学生学习本课兴趣,提出问题。
2、注意让学生观察讨论。学生根据教师的引导得出这样一组数据:
3、概括规律。学生自己先概括规律,教师做最后的总结。
4、应用规律,灵活练习。
5、课堂总结。
本节课取得的教学效果还是很理想的,学生自己得出了规律,并能应用于实践。整堂课学生参与度高,学习兴趣浓厚。
不足之处:
1、语言不具有吸引力,没有抑扬顿挫语言气氛。
2、缺乏适当的鼓励,课堂气氛后来不如先前活跃,少部分学生,特别是性格内向,学习有困难的学生表现不够。
3、过于相信学生的理解能力,教学内容的安排偏多。
4、教师存在无用语言,比如说:确定吗?你们觉得是这样吗?
小数比大小教学设计篇三
小数点位置移动引起小数大小的变化这节知识是在学生已经掌握整数的有关知识,特别是十进制计数法以及小数的意义和性质等知识之后学习的。因为小数与整数一样,都是按照十进制来计数,也就是数字所在的位置不同,表示的数值大小也不同。小数的数位是由小数点确定的,所以,小数点的移动必然引起小数每一位上的数值发生变化。这一变化规律不仅是小数乘除法计算的根据,也是复名数与小数相互改写的重要基础。这一小节教材内容的展开,注意了由感性到理性,由具体到抽象的思维过程,并通过已有的知识来引入新课,充分调动学生学习的积极性,从而引导学生发现和掌握这一规律。
根据教学大纲和教材的特点,确立的教学目的是:
小数比大小教学设计篇四
理解并掌握比较两个小数大小比较的方法,会正确比较两个小数的大小。
【过程与方法】。
通过观察,讨论等活动,培养学生抽象概括能力。
【情感态度与价值观】。
在参与数学活动中,渗透比较的相对性思想。
【重点】。
掌握小数比较大小的方法。
【难点】。
探索小数比较大小方法的过程。
(一)导入新课。
1.出示课件,体育课上,同学们进行了跳远比赛,这是这几位同学跳远成绩,同学们能不能帮助老师,对这几位同学进行排一下名次。
(二)生成新知。
提问:哪位同学跳的最远?
预设学生回答小明。
提问:为什么?(让学生思考)。
总结:预设学生回答小明跳远成绩3米多,其余同学2米多,所以小明成绩最好,带领学生一块总结出两个数在进行大小比较时,整数部分大的小数大。
学生通过十分位表示的分别是8分米,9分米,学生得出小强成绩最好。
总结:在整数部分相同时,怎么来比较大小。引导学生得出,两个整数部分相同的小数在进行比较大小时,十分位的数比较大。
让学生自行总结出,此时比较百分位。
带领学生进行总结,两个小数进行大小比较时,先比较整数部分,整数部分大的小数大,整数部分相同时比较十分位,十分位相同时,比较百分位以此类推。
(三)巩固提高。
比较5.667和5.676大小。
(四)小结作业。
小结:提问的方式让学生回顾本节知识,带领学生一块总结本节内容。
作业:课后习题1.3.5题。
小数比大小教学设计篇五
1、熟练比较小数大小的方法和步骤,并能根据要求排列几个数的大小。
3、培养学生的观察能力和判断能力。
4、让学生在交流合作中体验学习数学的乐趣。
调动学生已有知识和经验,促进知识的迁移。
课件。
一:复习准备。
1、基础训练。
(练习题卡)。
2、比较下面每组中两个数的大小。
1003o999325o2586124o6214832o837。
师:你能描述出整数是如何比大小的吗?
生:……。
师:(小结)整数进行比较时,首先要看它的数位,数位多的数就大。数位相同时,从高位一位一位的往下比,直到比出大小为止。
二、自主探究新课。
1、创设情境。
师:刚才,同学们跟着老师一起回顾了一下整数大小的比较方法。那么小数比较大小的方法又是怎样的呢?今天,就让我们一起来研究一下小数比较大小的方法。(板书课题:小数的大小比较)。
师:我们一起来看一下这幅图,你能从这副图上得到哪些信息。
生:他们在跳高,……。
师:下面,我们一起来看一看他们的成绩。(出示卡片)。
2.45米、1.6米、1.98米、1.45米。
师:要分别排出这四位同学的名次前后,就要将他们的成绩一一进行比较,那下面老师把他们分别分成两组来进行比较,看看谁会是优胜者。
2、比较2.45和1.6。
师:这两个成绩该怎么谁的更好?你是怎么想的?引导学生想办法进行比较。
在小组内交流自己的想法,然后全班汇报交流。
生:……小结:先比它们的整数部分,整数部分大,这个数就大。
3、比较1.98和1.45。
师:他们的成绩,又该怎么比呢?引导在小组内交流自己的想法,然后全班汇报交流。
生:……。
三、扩展运用。
1、比较下面两个数的大小,并说一说是怎样比的。
(1)3元()2.6元。
(2)6.35米()6.53米。
(3)4.723()4.79。
(4)0.458()0.54。
2、说说你是从哪位比出他们的大小的。
6.4()5.912.4()13.083.21()3.12。
4.83()4.594.36()4.3712.352()12.36。
四、全课总结通过今天这节课的学习你有是,什么收获?
五、板书设计:略。
小数比大小教学设计篇六
苏教版《义务教育课程标准实验教科书数学》五年级(上册)第74~75页,练习十三第4~7题。
2、使学生在探索规律的过程中,经历观察、比较、猜想、归纳、验证等一系列数学活动,体验探索数学规律、发现数学结论的基本方法,增强学习的兴趣和自信心。
3、使学生在参与数学活动的过程中,学会与人交流,逐步形成良好的与人合作的习惯和意识。
3、揭示课题:如果一个小数的小数点向左移动,小数的大小变化又会具有怎样的规律呢?这样的规律又可以使我们很方便地解决什么样的实际问题呢?今天我们就来研究这一问题。
1、提出猜想。
出示例5:21.5除以10、100、1000的商各是多少?
让学生将上述问题改写成三道除法算式。
学生边观察算式边进行猜想,并在小组里交流。
2、验证猜想。
(1)初步验证。
提问:这样的猜想到底对不对呢?我们可以怎样去验证?(引导学生想到可以逐一计算出每题的商,并将它与被除数进行比较)。
学生用计算器独立计算出三道题的得数。(提醒学生注意观察商的变化规律)。
组织交流,并引导学生具体分析每一题得数小数点的变化情况。
根据学生的交流,板书:
21.5÷10=2.15小数点向左移动一位。
21.5÷100=0.215小数点向左移动两位。
21.5÷1000=0.0215小数点向左移动三位。
组织学生结合上面的计算结果,具体说明猜想正确与否。
小结:经过实际计算,我们发现这一组题目符合我们的猜想。
(2)举例验证。
提问:刚才我们计算的一组题目,符合同学们提出的猜想,是不是就可以认为这个猜想一定是正确的?(引导学生想到所研究的例子还很少,要是任意举出的例子都符合这一要求,我们才能确认猜想是对的)。
要求:下面就请每个同学任意再找一些小数,分别除以10、100、1000,用计算器计算,看看是不是仍然有这样的规律。要注意所举的算式不要超过计算器的计数范围。
学生自己找一些数,列出相应的算式,并用计算器计算验证。
学生活动后,组织全班交流。
(3)确认猜想。
谈话:请同学们小组合作,将所举的算式放到一起进行观察,并互相说一说自己举例验证的情况。
反馈:你们所举的例子是不是都符合刚才的猜想?
确认:对于刚才的猜想,你有什么想法?(引导学生想到每个人任意举出的例子都说明猜想是正确的,说明我们的猜想是成立的)。
3、小结:通过刚才的探索,你发现了一个怎样的规律?能用自己的话完整地说说吗?
追问:能说说你是怎样发现这一规律的吗?
1、教学例6。
出示例6中的表格,让学生说说从表格中知道了什么。
提问:长颈鹿的体重是多少吨?怎样解决这样的问题?
学生独立思考,完成上面的改写。
组织交流,着重引导学生理解:把500千克改写成用“吨”作单位的数,可以用500÷1000,计算500÷1000可以直接把500的小数点向左移动三位,得到0.500,再化简成0.5。
2、指导完成“试一试”。
出示题目后,让学生独立完成。
3、拓展延伸。
谈话:想一想,运用这个规律还可以使哪些计算简便?(引导学生想到把低级单位转化成高级单位都可以运用这一规律使计算简便)。
练习:完成练习十三第5题。
小结:将低级单位转化成高级单位,只需根据进率将小数点向左移动相应的位数。
1、完成“练一练”第1题。
重点引导学生交流0.8的小数点向左移动一位、两位、三位分别是怎样思考的。
2、完成“练一练”第2题。
引导学生理解题意后,让学生先说一说,括号里要填的数与什么有关,然后让学生独立完成。交流时让学生说说怎么看出从10到0.1,小数点向左移动了几位。
3、完成“练一练”第3题。
让学生读题后先说说单价、数量和总价之间的关系,然后独立完成。
提问:今天这节课,你有什么收获?
重点引导学生交流:
(1)经过探索你发现了一个怎样的规律?
(2)我们是怎样探索出这个规律的?
(3)应用这个规律可以方便地解决什么样的问题?
(4)与同学之间的合作愉快吗?
小数比大小教学设计篇七
小数如何比较大小呢?(板书课题)。
2.大胆猜测:
举例说明整数是如何比较大小的?(当整数的位数相同的时候,从高位比起;位数不同的时候,位数越多,数越大)。
3.比较下面整数的大小:
教师提问:根据你已有的知识经验,和你对小数的了解,能试着说一说小数怎样比大小吗?
小数比大小教学设计篇八
3.7237237.2。
教师:同学在学习和生活中不要像小马虎那样把小数点写错。
小马虎这次吸取了教训,不再因为把小数点的位置向右移动而把原数扩大了。他把商品的标签又重新写上了价目:(出示课件)。
橡皮0.150元铅笔盒0.532元。
学生尺0.186元计算器2.573元。
新的价格标签公布后小马虎的文具店那个叫火,不一会小马虎所写的文具就买完了,妈妈看买的这么快,就看了看他写的价目表差点儿给肺气炸了。这是怎么回事?请你帮他找出原因。
小数比大小教学设计篇九
1、让学生探索小数乘法的计算方法,能正确进行笔算,并能理解其中的算理。
2、使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
3、创设情境,激发学生学习数学的兴趣,使学生感受学习数学的乐趣。
让学生通过主动探索,理解并掌握小数乘小数的计算方法。
(一)创设情境,引入新课。
1、教师谈话导入,以学校宣传栏需要刷油漆为例,引入课题。
(1)从图中,你能搜集到哪些信息?
(2)根据这些信息,你能提出哪些数学问题?
(设计意图:教材提供的学习素材是解决校园生活中的实际问题,主要体现了“计算教学同解决问题紧密联系”思想。因此在教学中注意创设生活情境,让学生根据呈现的数据独立提出能解决的问题,并根据自己提出的问题列出算式,这样不仅引起了新知和旧知的认知冲突,同时也提高了学生解决实际问题的能力。)。
3、通过观察比较所列的乘法算式。(揭示课题:小数乘小数)。
(二)深化探究,总结算法。
1、教学新知,初步探索小数乘小数的计算方法。
(1)引导谈话:根据以往我们计算小数乘法的经验,你觉得用竖式计算小数乘小数时,是否也可以把小数看成整数来计算呢?“2.4×0.8”请学生尝试把两个小数都看成整数,并按整数乘法进行笔算。
(2)组织学生共同探究竖式计算算法和算理。
请学生根据板演说一说的计算算理,并年顺势画上算理指示图。
(3)学生独立完成后交流计算方法。
引导学生明确:把两个因数都看成整数,等于把一个因数乘10(或100),另一个因数乘10,所以得到的积等于原来的积乘100(或1000)。要求原来的积,就要用积除以100(或1000)。
(4)小结:小数与小数相乘,两个因数一共有几位小数,积里面就有几位小数。
(5)交流:在小组里相互说说应该怎样计算小数乘小数?你能不能总结一下,这类小数乘小数的题应该怎样计算?在小组里概括一下方法。先怎么做的,再怎么做的。
(6)根据学生回答进行小结:先按整数乘法算出积是多少,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)引发冲突,突破难点。
1、引导探究因数与积的小数位数的关系。
出示例4:0.56x0.04=。
2、学生独立计算,组织讨论:
小数数位不够怎么办?
3、交流后组织小结出“乘得的积的小数位数不够要在前面用0补足,再点小数点”。
4、计算下面各题。
3.7×4.60.48×1.50.29×0.070.056×0.15(强化所学)。
(四)巩固练习,深化理解。
1、在下面各题计算的积里点上小数点的正确位置。
2、完成“练习一”第1题。
让学生独立完成后,让学生说说思考的过程,重点说说是怎样确定积的小数位数的。
3、完成“练习一”第2题。
先让学生独立完成,再集体评议。
(五)全课总结,畅谈收获。
谈谈你的收获和大家一起分享一下。
小数比大小教学设计篇十
1、结合具体的事物,经历自主探索小数乘小数的计算方法的过程。
2、理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。
3、积极参与数学活动,获得借助计算器和运用自己的知识解决问题的成功体验。
一、问题情境
师生谈话,由介绍自己家的房间面积谈起,引出聪聪家客厅面积的问题。教师口述出示相关信息并板书。
学生发言,教师对注意观察生活的学生给予表扬。
师:我们先来算一算聪聪家客厅面积的问题。聪聪家客厅长4、8米,宽3、6米。
教师板书:
长4、8米 宽3、6米
二、解决问题
1、客厅面积。
(1)提出问题(1),师生共同列出乘法算式。引导学生观察算式中的因数的特点。
师:要求“聪聪家客厅的面积有多少平方米”怎样列式?
学生说算式,教师板书:
4、8×3、6=
师:观察算式中的因数,你发现了什么?
生:算式中两个因数都是小数。
生:两个因数都是一位小数。
师:观察的很仔细,今天我们就来研究小数乘小数的计算方法。
板书课题:小数乘小数
(2)提出估算的要求,让学生说一说自己是怎样想的。学生方法只要合理,就予以肯定。
师:请同学们先估算一下,聪聪家客厅的面积大约是多少。
给学生一点思考、估算的时间。
师:谁来说一说,你是怎样估算的?结果是多少?
学生可能出现以下方法:
(1)把4、8看成5,把3、6看成4,5×4=20,所以客厅面积不到20平方米。
(2)把4、8看成5,把3、6看成3、5,5×3、5=17、5,所以,聪聪家客厅的面积大约是17、5平方米。
(3)把4、8看成4,把3、6看成3,4×3=12,聪聪家客厅的面积一定在12平方米以上。
(3)提出用竖式计算的要求,讨论:两个因数都是一位小数怎么办?用整数相乘的方法算出48×36的积以后怎么办?让学生充分发表自己的想法。
师:聪聪家客厅的面积不到20平方米。那么,到底是多少平方米呢?我们运用竖式计算一下。
教师板书竖式:
生:4、8扩大10倍是48,3、6扩大10倍是36,先算48×36。
生:把两个因数分别扩大10倍,变成48×36。
师:把两个因数分别扩大10倍,变成48和36。
教师板书:
师:用整数相乘的方法算出48乘36的积以后怎么办?
学生可能出现不同意见。如:
生:把积缩小100倍。
生:把积缩小10倍。
如果出现不同意见,教师进行指导。使学生了解,两个因数分别扩大10倍,就等于这两个因数的积扩大100倍。
即 4、8×10×3、6×10=4、8×3、6×100
(4)先讨论怎样计算,再师生共同完成竖式计算。重点讨论怎样确定小数点的位置。
师:谁来说一说,4、8×3、6怎样用竖式计算?
生:把4、8看作48,把3、6看作36,用整数乘整数的方法算出48乘36的积,再把积缩小100倍。
师:好!请同学们说,我来写,我们共同完成竖式计算。
教师随着学生的回答,板书:
师:按整数相乘得出1728后,怎么办?
生:把1728缩小100倍。
生:从1728右边开始数出两位点上小数点。
教师完成板书:
2、沙发占地面积。
(1)让学生读问题(2),并观察沙发图,了解其中的信息和要解决的问题,写出算式,并讨论算式中两个因数的特点。
生:沙发的长是1、8米,宽是0、85米。
生:问题是沙发占地多少平方米?
师:求沙发占地多少平方米?怎样列式?
学生可能说出不同的算式,教师肯定并板书。
0、85×1、8
师:同学们看一看这个算式的两个因数,你发现了什么?
生:这个算式中的两个因数都是小数。
生:两个因数一个是一位小数,一个是两位小数。
(2)提出:“怎样用竖式计算”的问题,进行讨论,然后师生共同完成,竖式计算。在横式中写得数时,告诉学生,根据分数的基本性质,小数末尾的0可以不写。
师:这样的两个小数相乘,用竖式计算怎样算呢?
教师板书竖式:
生1:1、8扩大10倍是18,0、85扩大1000倍是85,先算出18乘85的积,再把这个积缩小1000倍。
生2:先按整数相乘的方法计算85×18,再把积缩小1000倍。
学生说的只要合理就给予肯定。
师:好!就按大家说的方法,我们一起算一算。大家说,我来写。
学生说,教师板书。
师:按整数相乘的方法算出85×18等于1530后,怎么办?
生1:把1530缩小1000倍,在1的后面点上小数点。
生2:从1530的右边开始数出三位,在前面点上小数点。
教师在竖式中点上小数点。
师:大家看今天算出的这个小数积比较特殊,小数的末位是0,根据小数的基本性质,在横式写得数时,小数末尾的0可以不写。
完成横式:
0、85×1、8=1、53(平方米)
(3)让学生用计算器检验,得到确定答案。
师:用竖式算的对不对呢?请同学们用计算器检验一下。
学生计算交流。
三、归纳总结
让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。再师生共同总结归纳小数乘小数的计算方法。
师:观察两个竖式中的因数和积,你发现它们的小数位数有什么关系?
生:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。
生:积的小数位数就是两个因数小数位数的和。
生1:按照整数乘法的计算方法算出积。
生2:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
最后,教师完整的口述小数乘小数的笔算方法。
师:小数乘小数,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
四、尝试应用
1、提出问题(3),让学生自己读题并观察茶几图,了解信息和要解决的问题,列出算式,先估计积有几位小数,再用竖式计算。
生:茶几的长是0、9米,宽是0、45米,要求茶几的面大约是多少平方米。
师:怎么列式?
学生说,教师板书:
0、45×0、9=
师:估计一下,0、45×0、9的积有几位小数?为什么?
生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。
师:请同学们试着用竖式计算。
学生自主笔算,教师巡视,个别指导。请一名好学生板演。
2、订正学生计算的结果,重点说一说怎样确定积中小数点的位置。
师:谁和板演的结果不一样?
如果学生出现小数点点错的,就结合错题进行指导。如果没有,请板演的同学说一说确定小数点时是怎样想的。如:
生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。
3、“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。
生:看两个因数一共有几位小数。
五、课堂练习
1、“练一练”的第1题。让学生先判断积有几位小数,再计算,最后全班交流。
师:请看“练一练”第1题,判断一下,积有几位小数。
指名回答。
师:请同学们在练习本上计算。
学生自主计算,教师巡视,注意帮助学习有困难的学生。
2、“练一练”的第2题,先引导学生弄懂题意,再独立完成。
师:请同学们读一读第2题,说说你从中了解到了哪些信息?
学生说出“大门和侧门的宽度和高度”的信息。
师:学校大门和侧门的面积各是多少?请同学们算一算。
小数比大小教学设计篇十一
p66页例8,“练一练”,练习十二第1、3、4、5题。
使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。
掌握确定积的小数位数时,位数不够时用“0”补足。
确定积里小数点的位置。
课件、展台。
一、复习:出示练习十二第4题。
根据第一栏的积,写出其他各栏的积(说说是怎样想的?)。
二、教学例8。
出示例8。
(1)花架的占地面积是多少平方米?怎样列式?
指名回答,师板书算式。
(2)学生试做。
0.28。
小数比大小教学设计篇十二
“除数是小数的除法”是小学数学教学中的一个重点,又是难点,它在计算教学中处于关键地位。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。
7.6÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试。”尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我也进行了考虑。让学生明白,小数除以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的小数点画去,为使学生看得更清楚,我要求学生在原有的小数点划掉,再把被除数的原有的小数点划掉,向右移动,移动的位数取决于除数的小数位数。除数有几位小数,被除数的小数点就向右移动几位。然后按照整数除法的方法进行计算。最后通过一些课后练习及生活中的数学,让学生巩固方法。
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数的小数点对齐。
四、除到哪位商那位,不够时忘记在商的位置上写0,再把下一个数掉下来。还有部分学生用余数再除一次。
小数比大小教学设计篇十三
五年级之前我们学习了“整数乘整数”,最近几天我们又学习了“小数乘整数”,今天我们要在此基础上研究“小数乘小数”。看着题目,你有什么问题或者有什么猜想吗?预设:
生4:小数乘小数与整数乘整数、小数乘整数相同点和不同点是什么?……。
大家心里充满着问题和猜想,那就让我们带着问题和猜想一起走入今天的数学课堂。
二、创设情境,自主探索。
生:测量出黑板的长和宽,计算出黑板的面积。
我们先用估算的方法估计一下黑板面积的取值范围是多少?(4平方米)黑板的面积实际是多少平方米呢?课前时老师已经给同学们下发了导学案,让同学们思考这个问题。下面就请同桌两个互相交流一下你们的想法。
接下来,请这几位同学把他们的计算方法和我们大家分享一下。a.3.9米=39分米。
1.2米=12分米。
39×12=468平方分米=4.68平方米(利用以前学过的单位之间的换算,解决了问题)。
b.39×12=468468÷100=4.68。
生:都是想办法把小数乘小数的问题转化成整数乘整数,最后利用积的变化规律,点上小数点。
师:是的,都是想办法把新问题转化成以前学过的旧问题,这是解决问题的一种好策略。刚才老师发现有好多同学都选择了笔算的方法,今天我们就重点研究小数乘小数的笔算方法。
不看板书,你能说说一说吗?
老师这里还有2道小数乘小数,要不要试一试?出示:5.8×6.4=。
3.2×1.15=全班试做,2人板书。
板书的两人交流计算过程:重点第二题的交流:(1)为什么把乘数的位置交换了?(2)为什么把积末尾的0划去?(利用小数的性质进行化简)。
出示错例:老师手里有份作业,我们看看问题出在哪?中间的计算过程也对,就是最后的结果不对,应该先怎么样,再怎么样,(先点小数点,再把0划去)我们把最后的积重新写一遍。
现在黑板上有3道小数乘小数的算式,我们来观察一下每个算式中乘数的小数位数和积的小数位数有什么关系?(出示:乘数的小数位数之和等于积的小数位数)。
利用这一规律,对于我们计算有什么帮助?(可以很快确定积的小数位数),真的吗?我们来检测一下:出示练一练(你能给下面的积点上小数点吗?)。
完成“想一想”、“比一比”、“填一填”
三、交流收获。
是的,许多数学知识之间都是有联系的,我们要善于找到这种联系。
小数比大小教学设计篇十四
一、设计理念:
1、以学生为主体,让学生真正成为课堂的主人,让学生自主参与“创设情境,提出问题——自主探究,感悟算理——观察比较,概括方法——巩固练习,应用提高”等环节,使学生不断焕发“思维的活力”。
2、计算方法的掌握,计算技能的提高更需要学生对算理的理解和感悟。小数乘法和整数乘法从整体上看是一个系统,整数乘法和小数乘整数的计算方法和算理为小数乘小数的学习奠定了扎实的知识和思维基础。不同的是,小数乘小数积的小数点的定位稍显复杂。基于这样的认识,教学设计要重视计算教学探索过程的有效开放,充分利用学生已有的知识和经验,让学生经历独立尝试、思维交流、体验评价,理解感悟算理。
二、教学目标:
1、让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理作出合理的解释。
2、使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
3、培养学生的友好合作意识和自主探究解决问题的能力。
4、创设情境,激发学生学习数学的兴趣,使学生感受学习数学的乐趣。
三、教学重点:让学生通过主动探索,理解并掌握小数乘小数的计算方法。
一、创设情境,引入新课。
2、这些问题你会解决吗?你打算怎样计算?引导学生列出乘法算式。(过道:6.5×0.9;客厅:6.3×4.2;书房:5.4×3;主卧室:5.4×3.5;厨房:4.27×2.6;卫生间:4.27×1.4;小卧室:4.27×3)。
二、自主探索,掌握算法。
(1)引导谈话:根据以往我们计算小数乘法的经验,你觉得用竖式计算小数乘小数时,是否也可以把小数看成整数来计算呢?“6.5×0.9”请学生尝试把两个小数都看成整数,并按整数乘法进行笔算。
思考:按整数乘法计算,请你猜一猜,算出的结果跟实际的结果相比会有多大分别呢?
(2)组织学生共同探究竖式计算算法和算理。
学生独立思考后在四人小组内进行交流其中计算的道理。教师巡视让不同算法的学生上台板演。
请学生根据板演说一说的计算算理,并年顺势画上算理指示图。
2、独立练习,进一步理解小数乘小数的计算方法。
(1)请你想一想可以怎样计算“6.3×4.2、5.4×3.5、4.27×2.6、4.27×1.4”,根据自己的思考过程跟同桌说一说。
(2)学生独立完成后交流计算方法。
引导学生明确:把两个因数都看成整数,等于把一个因数乘10(或100),另一个因数乘10,所以得到的积等于原来的积乘100(或1000)。要求原来的积,就要用积除以100(或1000)。
三、进行比较,概括方法。
1、引导探究因数与积的小数位数的关系。
出示:5.4×36.5×0.9。
6.3×4.2、4.27×2.6竖式组织讨论:
2、小结:小数与小数相乘,两个因数一共有几位小数,积里面就有几位小数。
3、交流:在小组里相互说说应该怎样计算小数乘小数?你能不能总结一下,这类小数乘小数的题应该怎样计算?在小组里概括一下方法。先怎么做的,再怎么做的。
5、出示“0.56×0.04”,你能不能按照我们刚才总结的计算方法计算一下。看一看,你有什么新的发现?交流后组织小结出“乘得的积的小数位数不够要在前面用0补足,再点小数点”。
四、巩固练习,深化理解。
1、在下面各题计算的积里点上小数点的正确位置。
2、完成“练习一”第4题。
让学生独立完成后,让学生说说思考的过程,重点说说是怎样确定积的小数位数的。
3、完成“练习一”第5题。先让学生独立完成,再集体评议。
五、全课总结,拓展延伸。
今天这堂课大家运用知识间的联系,探索出小数乘小数的计算方法,请谈谈你的收获和大家一起分享一下。同学们要做个有心人,生活中有许多小数乘法的问题,希望你们能用学过的知识去解决。
小数比大小教学设计篇十五
1.使学生通过自主探索,理解并掌握小数乘小数的计算方法,并能正确进行计算。
2.使学生在计算过程中,养成认真检查、勤于验算的好习惯,进一步体会数学知识之间的内在联系,增强学好数学的自信。
3、培养初步的迁移、推理、抽象、概括能力心。
一、谈话导入。
我们已经学习了小数乘整数,今天这节课我们将继续学习小数乘法。让我们一起回忆一下以前学过的知识。
用卡片出示口答题:
3.4×15。
23×1.48。
0.78×32提问:下面各题的积中有几位小数?你是怎么知道的?
出示:小明房间和阳台的平面图。
提问:你能根据图中的数据求出哪些问题?
根据学生的回答整理出两个问题:
(1)小明房间的面积有多大?(2)阳台的面积是多少平方米?
让学生选择其中一个问题列竖式解答,并各由一个学生进行板演。
二、自主探索。
改变问题:如果把小明房间的宽度3米缩短为2.8米,你还能求出小明房间和阳台的面积各是多少吗?先估一估,再列式解答。
学生尝试练习,如果有困难的可以看书自学。小组分享自学成果,归纳达成共识。全班交流。
谁来说说3.6×2.8是怎样估算的?又是怎样用竖式计算的?
展示学生尝试的竖式并追问:把这两个小数都看成整数,相乘后怎样才能得到原来的积?
预设一:只要在积中点上两位小数就能得到原来的积。
教师根据学生回答,板书:
教师根据学生的说理进行板书。(如学生有困难可适当进行引导性提问:两个因数看成整数后,等于把原来的两个因数分别乘多少?)。
提问:在用竖式计算2.8×0.15时,你觉得还有哪些地方需要提醒大家的?(列竖式时把数位多的小数写在上面;点上小数点后,可以根据小数的性质划去小数末尾的0。)。
提问:比较上面两题在计算时有什么相同的.地方?又有什么不同的地方?(相同点:都是把小数看成整数,按整数乘法算出积的。不同点:第1题是一位小数和一位小数相乘,第2题是一位小数和两位小数相乘;第1题的积是两位小数,第2题的积是三位小数。)。
提问:通过刚才的尝试、交流,你现在能说说小数乘小数应该怎样进行计算?小组交流汇报后,教师小结:小数乘小数,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
三、巩固练习。
1.完成“做一做”第1题。
先让学生独立完成,再指名说说是怎样确定积的小数位数的。2.完成“做一做”第2题。请三个学生进行板演,其余学生自主练习。反馈时重点说说后面两题要先点小数点,再划去小数末尾的0。
3.完成下题。
一种西服面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估计得数,再计算)。
集体校对后,追问:因数中一共有两位小数,为什么积中只有一位小数?
四、全课总结。
小数比大小教学设计篇十六
1.结合具体内容认识小数,知道以元为单位、以米为单位的实际含义。
2.知道十分之几可以用一位小数表示,百分之几可以用两位小数表示。
3.能识别小数,会读写小数。
4.密切数学与生活的联系,激发学生的学习兴趣。
5、通过合作学习,培养学生合作意识、思考与语言表达能力。
1.知道十分之几可以用一位小数表示,百分之几可以用两位小数表示。
2.会读写小数。
3、通过合作,培养学生合作意识及语言表达能力。
教学时间:1课时。
一、创设情境,引入小数。
1.教师出示ppt课件:小数的初步认识。
学生小组交流,教师选代表说明自己的分法和理由。
2.区别整数与小数。
师:我们将这些标价(物品的价格,即多少钱)分成两类。
左边这组数是我们以前学过的,都是整数。右边这组数它们有一个什么特点?(数中间都有一个小圆点)。象这样的数叫做小数,“”叫做小数点。今天我们就一起来认识小数。(出示课题:认识小数)。
二、认识小数。
让学生试读标价牌上的小数。(出示课件)。
介绍小数的读法——小数点读作“点”,小数点左边代表整数部分,按照整数的读法读;小数点右边代表小数部分,依次读出每一个数字,读时,先读整数部分,再读“点”最后读小数部分。认识以元为单位小数的实际含义。
哪些同学已知道,标价牌上的小数它们分别表示多少钱?(学生回答)。
2.完成表格中的填空。
(出示课件)。
要求学生轻声读出货架上三种食品标价中的小数,填写它们分别表示____元____角____分。
3.你还在哪里见过小数。
三、例1教学。
师:(出示课件)看看这些学生都在做什么?同学们。你知道自己的身高吗?
1.学生交流自己的身高是1米多少厘米?
2.只用米作单位,该怎样表示?
3.引出以米为单位的一位小数。
介绍小数的写法:先写整数部分,再在右下角写点,最后写小数部分。
想一想:
什么样的分数能改写成一位小数?
4.引出以米为单位的两位小数。
想一想:
什么样的分数能改写成两位小数。
让学生把答案填写在课本上。
5.小组讨论。
出示:王东身高1米30厘米,写成小数是()米。
同桌交流后汇报。写成1。30米和1。3米都是对的,(因为30厘米也就是3分米)。
四、巩固应用。
1、练习二十一第1题。
2、练习二十一第2题。
五、拓展。
小数的历史。
六、小结:这节课有什么收获?
小数比大小教学设计篇十七
一、设计理念:
1、以学生为主体,让学生真正成为课堂的主人,让学生自主参与“创设情境,提出问题——自主探究,感悟算理——观察比较,概括方法——巩固练习,应用提高”等环节,使学生不断焕发“思维的活力”。
2、计算方法的掌握,计算技能的提高更需要学生对算理的理解和感悟。小数乘法和整数乘法从整体上看是一个系统,整数乘法和小数乘整数的计算方法和算理为小数乘小数的学习奠定了扎实的知识和思维基础。不同的是,小数乘小数积的小数点的定位稍显复杂。基于这样的认识,教学设计要重视计算教学探索过程的有效开放,充分利用学生已有的知识和经验,让学生经历独立尝试、思维交流、体验评价,理解感悟算理。
二、教学目标:
1、让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理作出合理的解释。
2、使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
3、培养学生的友好合作意识和自主探究解决问题的潜力。
4、创设情境,激发学生学习数学的兴趣,使学生感受学习数学的乐趣。
三、教学重点:让学生透过主动探索,理解并掌握小数乘小数的计算方法。
四、教学难点:理解小数乘小数的算理。
[教学过程]。
一、创设情境,引入新课。
1、教师谈话导入,下面一幢宽敞漂亮的住房的平面图。
(1)从图中,你能搜集到哪些信息?
(2)根据这些信息,你能提出哪些数学问题?
学生可能会提出:。
问题1,客厅有多少平方米。
问题2,厨房有多大。
问题3,主卧室有多少平方米。
问题4,书房多少平方米。
问题5,房间内过道多少平方米。
……。
2、这些问题你会解决吗?你打算怎样计算?引导学生列出乘法算式。(过道:6.5×0.9;客厅:6.3×4.2;书房:5.4×3;主卧室:5.4×3.5;厨房:4.27×2.6;卫生间:4.27×1.4;小卧室:4.27×3)。
二、自主探索,掌握算法。
1、教学新知,初步探索小数乘小数的计算方法。
(1)引导谈话:根据以往我们计算小数乘法的经验,你觉得用竖式计算小数乘小数时,是否也能够把小数看成整数来计算呢?“6.5×0.9”请学生尝试把两个小数都看成整数,并按整数乘法进行笔算。
思考:按整数乘法计算,请你猜一猜,算出的结果跟实际的结果相比会有多大分别呢?
(2)组织学生共同探究竖式计算算法和算理。
学生独立思考后在四人小组内进行交流其中计算的道理。教师巡视让不同算法的学生上台板演。
请学生根据板演说一说的计算算理,并年顺势画上算理指示图。
2、独立练习,进一步理解小数乘小数的计算方法。
(1)请你想一想能够怎样计算“6.3×4.2、5.4×3.5、4.27×2.6、4.27×1.4”,根据自己的思考过程跟同桌说一说。
(2)学生独立完成后交流计算方法。
引导学生明确:把两个因数都看成整数,等于把一个因数乘10(或100),另一个因数乘10,所以得到的积等于原先的积乘100(或1000)。要求原先的积,就要用积除以100(或1000)。
三、进行比较,概括方法。
1、引导探究因数与积的小数位数的关系。
出示:5.4×36.5×0.96.3×4.2、4.27×2.6竖式。
组织讨论:
(1)小数乘法算式题中的两个因数分别是几位小数,积是几位小数?
(2)透过比较,你发现积的小数位数与因数的小数位数有什么关系?
2、小结:小数与小数相乘,两个因数一共有几位小数,积里面就有几位小数。
3、交流:在小组里相互说说就应怎样计算小数乘小数?你能不能总结一下,这类小数乘小数的题就应怎样计算?在小组里概括一下方法。先怎样做的,再怎样做的。
4、根据学生回答进行小结:先按整数乘法算出积是多少,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
5、出示“0.56×0.04”,你能不能按照我们刚才总结的计算方法计算一下。看一看,你有什么新的发现?交流后组织小结出“乘得的积的小数位数不够要在前面用0补足,再点小数点”。
四、巩固练习,深化理解。
1、在下面各题计算的积里点上小数点的正确位置。
2、完成“练习一”第4题。
让学生独立完成后,让学生说说思考的过程,重点说说是怎样确定积的小数位数的。
3、完成“练习一”第5题。
先让学生独立完成,再群众评议。
五、全课总结,拓展延伸。
小数比大小教学设计篇十八
1、学习目标:
1、掌握小数大小的比较方法,会正确比较小数大小.。
2、理解小数的性质。
2、学习重点:
小数的意义、性质、大小比较.。
3、学习难点:
明确小数的性质.。
引出2.50元=2.5元,8.00元=8元。在2.5的末尾添上零,把8.00元末尾的零去掉,并没有影响小数的大小,师:接下来,我们就来探究小数的性质。
(ppt)比较0.1米、0.10米、0.100米的大小。
引出0.1米是十分之一米,,0.10米这个两位小数可以改写成分母是100的分数,就是10个百分之一米,0.100米就是100个千分之一米,十分之一米是1分米,10个百分之一米是10厘米,100个千分之一米是100毫米。因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
观察从左往右看,小数的末尾分别在添上0,从右往左看,小数的末尾在去0,也就是说,小数的末尾添上0或者去掉0,小数的大小不变。这是小数最重要的性质。
师:那我们学过的整数存在这样的性质吗?同学们请看,这三种车的载重量,50吨、5吨、500吨,它们的运送质量一样吗?显然是不一样的,所以说,整数末尾的0去掉或者添上,整数的大小就改变了。而小数的末尾添上0或者去掉0,小数的大小不变,在这要强调一点,小数末尾的0和小数点后面的0不一样,比如1.02中的0不是小数末尾的0,不能去掉。
习题巩固小数的性质,(ppt)下面这些数中的0,哪些可以去掉,哪些不可以去掉?仔细观察,这些0都是小数末尾的零,所以可以去掉,五百和六百,这两个整数中的0不能去掉,零点零四中的0,因为不是在小数的末尾,所以也不能去掉。
根据小数的性质,我们可以把小数化简(看投影说题目)。
师:可是在生活中,是不是所有的小数,是不是所有能化简的'小数,都要进行化简了,请看这个购物小票,(看投影说)。
由此我们总结出,小数大小的比较方法,是先比较整数部分,整数部分大的那个小数就大,那其它三个同学的成绩整数部分都是2,怎么比较出大小呢,我们接着看,十分们上的8表示8分米,9表示9分米,那小军的成绩就比小丽和小红的好,也就是就,整数部分相同,十分位上的数大的那个小数就大,以此类推,我们可以总结出小数大小的比较方法,比较两个小数的大小,先比较整数部分,整数部分大的那个数就大,整数部分相同,就比较十分位,十分位上的数大的那个数就大,十分位上的数相同,就比较百分位,百分位上的数大的那个数就大。,依次这样比下去。
巩固练习。
小数的性质和大小比较。
小数的末尾添上0或去掉0,小数的大小不变。
小数比大小教学设计篇十九
【教学内容】。
五年级(上册)第86~87页例。
1、“试一试”“练一练”,练习十五第1~3题。【教学目标】。
1.让学生通过自主探索,理解并掌握小数乘小数的计算方法,并能正确进行计算,培养初步的迁移、推理、抽象、概括能力。
一、基本训练。
1.口算练习。
二、进入新课。
1.导入新课,明确目标。
谈话:上面的几题,都是我们学过的小数乘整数的学习内容,今天这一节课,我们来进一步学习小数乘法中的“小数乘小数”有关学习内容。(板书课题)。
出示学习目标:1.通过自我探索,学会小数乘小数的计算方法。2.能正确计算小数乘小数。
改题:将56×1.2中的56改成5.6,这就是一道小数乘小数的计算题,会做吗?
2.自学尝试,自主探究。
学生尝试练习,如果有困难的可以先看书p86,看看书本老师是如何指导我们计算小数乘小数的。做好的同学也仔细的看书p86,不仅要会计算,还要知道为什么这样算。完善好课本空白的内容。
3.汇报交流,点拨解惑。
预设一:只要在积中点上两位小数就能得到原来的积。预设二:只要把积除以100就可以了。
继续追问:为什么积是两位小数(积要除以100),你是怎样想的?教师根据学生回答,板书竖式图示。追问:有没有不清楚的地方?谈话:像这样的计算题今后在计算时,为了提高正确率,我们应该先估算一下。看看“5.6×1.2”的积大约是多少?谁能估算的?(6左右)。
4.再次尝试,解决难点。
谈话:刚才我们探索了一位小数乘一位小数,那么一位小数乘两位小数,该如何计算呢?请大家打开课本p87,仔细阅读,同时完善好空白的地方,完成好后同桌交流。
交流:(课件出示)计算2.8×1.15时,在积里是怎样点小数点的?你能把自己的想法说一说吗?(列竖式时把数位多的小数写在上面;点上小数点后,可以根据小数的性质划去小数末尾的0)。
再次尝试:1.6×2.25(指名一生扮演)。
提问:在用竖式计算1.6×2.25时,你觉得还有哪些地方需要提醒大家的?
5.完善认知,得出结论。
三、巩固练习。
1.完成“练一练”第1题。
先让学生独立完成,再指名说说是怎样确定积的小数位数的。2.完成“练一练”第2题。
请三个学生进行板演,其余学生自主练习。反馈时重点说说后面两题要先点小数点,再划去小数末尾的0。3.完成练习十五第2题。
学生口答错误原因,并说说怎样改正。4.完成练习十五第3题。
一种西服面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估计得数,再计算)。
四、总结提高。
五、课堂作业。
练习十五第1题。